Roll No.

Total No. of Questions : 09

Subject Code: MPH-201

Paper ID : [A2815]

Time : 3 Hrs.

Max. Marks : 100

INSTRUCTION TO CANDIDATES :

1. Attempt any FIVE questions in ALL, including compulsory Question No. 9
2. Each question carries TWENTY marks.
3. a) Explain Heisenberg uncertainty principle and Using this principle calculate the binding energy of an electron in hydrogen atom.
b) Derive time-dependent Schrodinger wave equation for a particle subjected to a force. (8)
4. a) The position of an electron moving with a velocity of $10^{6} \mathrm{~m} / \mathrm{s}$ is located with an accuracy of $10^{-4} \mathrm{cms}$. Calculate :
i. The minimum uncertainity in the momentum of electron.
ii. The fractional uncertainly in the momentum.
b) What ratio of $\mathrm{E} / \mathrm{V}_{0}$ is necessary for scattering from a one dimensional step potential so that the transmission probability is 50%.
5. a) For Pauli's matrices, prove that (i) $\sigma_{x} \sigma_{y} \sigma_{z}=i$, (ii) $\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}$
b) If the eigen values of J^{2} and J_{z} are given by $\mathrm{J}^{2}|\lambda \mathrm{~m}>=\lambda| \lambda \mathrm{m}>$ and $\mathrm{J}_{z}|\lambda \mathrm{~m}>=\mathrm{m}| \lambda \mathrm{m}>$, show that $\lambda \geq \mathrm{m}^{2}$
6. a) Evaluate the Clebsh-Gordan coefficients for a system having $\mathrm{j}_{\mathrm{i}}=1 / 2$ and $\mathrm{j}_{2}=1 / 2$.
b) What is the ground state energy and wave function for two identical particles in the potential?
$\mathrm{V}(\mathrm{x})=\infty$ for $\mathrm{x}<0$ and $\mathrm{x}>0$, for $0<\mathrm{x}<\mathrm{a}$. if the two particles are (i) bosons and (ii) fermions?
c) The valence electron in the first excited state of an atom has the electronic configuration $3 s^{1} 3 p^{1}$.
i. Under L-S coupling what values of L and S are possible?
ii. Write the spatial part of their wave functions using single particle functions $\Psi_{\mathrm{s}}(\mathrm{r})$ and $\Psi_{\mathrm{as}}(\mathrm{r})$.
iii. Out of the levels, which will have the lowest energy and why?
7. Discuss time independent perturbation theory and obtain the expressions for the first order correction \& second order correction to Energy and Eigen function.
8. a) Prove that parity operator is Hermitian and unitary.
b) Prove that the fundamental commutation relation $[\mathrm{x}, \mathrm{px}]=$ ih remains unchanged uner unitary transformation.
c) Write a short note on the concept of space inversion and time reversal.
9. a) Write a short note on Fermi golden Rule.
b) Evaluate the scattering amplitude in the Born approximation for scattering by the Yukawa potential

$$
V(r)=V 0 \frac{\exp (-\alpha \mathrm{r})}{\mathrm{r}}, \text { where } \mathrm{V}_{0} \text { and } \alpha \text { are constants. }
$$

Also show that $\sigma(\theta)$ peaks in the forward direction $(\theta=0)$ except at zero energy and decreases monotonically as θ varies from 0 to Π.
c) In the Born approximation, calculate the scattering amplitude for scattering from the square well potential $V(r)=-V_{0}$ for $0<\mathrm{r}<\mathrm{r}_{0}$ and $\mathrm{V}(r)=0$ for $\mathrm{r}>\mathrm{r}_{0}$.
8. a) Starting from the Klein-Gordan equation, obtain the equation of continuity.
b) Show that the Dirac matrices $\alpha_{x}, \alpha_{y}, \alpha_{z}$ and β anticommute in pairs and their squares are unity.
9. Answer briefly :
a) Define inner product and outer product in dual space.
b) Show that a unitary operator remains unitary under a unitary transformation.
c) What is optical theorem?
d) Define particle exchange operator and show that its eigen values are ± 1.
e) Define differential scattering cross-section.
f) Write down the eigenvalues of $S_{x} \& S_{y}$ operators.
g) What is the formula for the first Born Approximation for scattering amplitude?
h) Write down the selection rules for transitions between different states
$(8 \times 2.5=20)$

