

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

M.Sc. Mathematics (2017 Batch) (Sem.-2)

ALGEBRA-II

Subject Code: MSM-201 Paper ID: [75008]

Time: 3 Hrs. Max. Marks: 80

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

Q1. Answer briefly:

- a) Define UFD.
- b) Prove that every field is principal ideal domain.
- c) Use Eisenstein's criterion to prove that the following polynomials are irreducible over Q.
 - i) x^2+1
 - ii) x^2 -3x+4
- d) State Gauss lemma
- e) Show that no finite field is algebraically closed.
- f) State Fundamental theorem of Algebra.
- g) Discuss PID.
- h) Find splitting fields of the polynomial x^4+x^2+1 .

1 M-75008 (S30)-974

SECTION-B

- Q2. Prove that Every Euclidean Domain is P.I.D.
- Q3. State and prove Eisenstein's Criterion.
- Q4. Prove that any finite extension of a finite field is a Galois extension.

SECTION-C

- Q5. State and prove fundamental theorem of Galois Theory.
- Q6. Prove that every finite separable extension is a simple extension.
- Q7. Prove that a field is finite if and only if its multiplicative group is cyclic.

www.FirstRanker.com

2 | M-75008 (S30)-974