www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

M.Sc.(Mathematics) (2017 Batch) (Sem.-2)

REAL ANALYSIS-II

Subject Code: MSM-202 Paper ID: [75009]

Time: 3 Hrs. Max. Marks: 80

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

1. Answer briefly:

- a) State the inverse function theorem.
- b) Define Convex Functions.
- c) When a function is said to be Borel measurable?
- d) Show that a set consisting of one point is measurable and its measure is zero.
- e) Prove that every continuous function is measurable.
- f) State the monotone convergence theorem.
- g) State littlewood's three principles
- h) State Egoroff's theorem.

1 M-75009 (S30)-1285

SECTION-B

- 2. State and prove the implicit function theorem.
- 3. a) If f is a measurable function and f = g almost everywhere, then prove that g is also measurable.
 - b) State and prove Lusin's theorem.
- 4. a) If E_1 and E_2 are measurable then prove that $E_1 \cup E_2$ is measurable.
 - b) Prove that the interval $[a, \infty]$ is measurable.

SECTION-C

- 5. a) Show that the monotone convergence theorem need not hold for decreasing sequences of functions.
 - b) State and prove bounded convergence theorem.
- 6. a) State and prove Fatou's lemma.
 - b) Prove that a function F is an indefinite integral iff it is absolutely continuous.
- 7. State and prove Lebesgue differentiation theorem.

2 | M-75009 (S30)-1285