

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

M.Sc Mathematics (2017 Batch) (Sem.-2) PARTIAL DIFFERENTIAL EQUATIONS

Subject Code: MSM-204 Paper ID: [75011]

Time: 3 Hrs. Max. Marks: 80

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

1. Answer the following:

- a) Form a partial differential equation by eliminating a, b from z = (x + a)(y + b).
- b) Solve p + q = z/a.
- c) Solve $p^2 + q^2 = 1$.
- d) Find the complete integral of $z = px + qy + p^2 + q^2$.
- e) Solve $r = a^2 t$.
- f) Find particular integral of $(D^3 10D^2D' + D'^3)$ $z = \cos(2x + 3y)$.
- g) State Laplace equation and diffusion equation.
- h) Classify the following equation as elliptic, parabolic or hyperbolic $\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial y}$.

1 M-75011 (S30)-1855

SECTION-B

- 2. a) Find the surface whose tangent planes cut off an intercept of constant length k from the axis of z.
 - b) Solve $(p^2 + q^2) y = qz$ using Charpit method.
- Solve $(x_2 + x_3) (p_2 + p_3)^2 + z p_1 = 0$ by using Jacobi's Method. 3.
- 4. a) Find equation of surface which cuts surfaces of the system $z(x + y) = \lambda (3z + 1)$ orthogonally and which passes through the curve $x^2 + y^2 = 1$, z = 1.
 - b) Find the general solution of $(D_v^2 \alpha^2 D_v^2) z = x^2$.

SECTION-C

- 5. a) The faces x = 0 and x = 1 of infinite slab are maintained at zero temperature and u(x, t) = f(x) at t = 0. Determine the temperature at a subsequent time t.
 - b) Find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and initial deflection $f(x) = k (\sin x - \sin 2x)$.
- Derive Heat Diffusion Equation and obtain the solution using method of separation of 6. variables.
- a) Solve $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ by the method of separation of variables. b) Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, subject to u(x, 0) = u(x, m) = 0 where $0 \le x \le \ell$ and $u(0, y) = 0, u(\ell, y) = F(y)$ where $0 \le y \le m$.

2 | M-75011 (S30)-1855