

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

M.Sc Mathematics (2017 Batch) (Sem.-2)

NUMERICAL ANALYSIS
Subject Code: MSM-205

. Paper ID : [75012]

Time: 3 Hrs. Max. Marks: 80

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

1. Answer briefly:

- a) Define absolute error with example.
- b) Explain loss of significant digit using example.
- c) Write formula for Newton Raphson method.
- d) Write maclaurins series expansion.
- e) Give general formula for Euler's method.
- f) Write expression for Simpson's 1/3 rule.
- g) Write a short note on Newton Cote's formulae.
- h) Apply modified Euler's method to find value at x=1.2 given that $\frac{dy}{dx} = x + y^2$, y(1)=1 in two steps of 0.1 each.

1 M-75012 (S30)-2073

SECTION B

- 2. Find the roots of the equation $x^3-2x-5=0$ using Regulafalsi method.
- 3. Solve the following system of equations using Gauss Jordan method :

$$-x + y + 2z = 2$$

$$3x-y+z=6$$

$$-x + 3y + 4z = 4$$

4. Transform the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ to tridiagonal form by Given's method. Find the eigen vector corresponding to largest eigen value.

SECTION-C

- 5. Using Lagrange's interpolation formula find a polynomial which passes through the points (0, -12), (1,0), (3, 6), (4, 12).
- 6. Use the classical Runge-Kutta formula of fourth order to find the numerical solution at x = 0.8 for

$$\frac{dy}{dx} = \sqrt{x+y}, \qquad y(0.4) = 0.41$$

Assume the step length h = 0.2

7. Consider the initial value problem y' = x(y + x) - 2, y(0) = 2. Use Modified Euler's method with step size h = 0.3 to compute approximations to y(0.6).