www.FirstRanker.com

Roll No.					Total No. of Pages: 0	2

Total No. of Questions: 11

PIT M.Sc (Physics) (Sem.-3)
CLASSICAL ELECTRODYNAMICS

Subject Code: PHS-532 Paper ID: [51121]

Time: 3 Hrs. Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SEVEN questions carrying FIVE marks each and students have to attempt any SIX questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- 1. a. What is the advantage of Laplace equation over Coulomb's law in determining electric field?
 - b. Define molecular polarizability and mention its unit.
 - c. Draw the field lines of a "physical" dipole.
 - d. With figure state a law to measure the magnetic field of a steady current.
 - e. State the first uniqueness theorem.
 - f. Explain the basic concept of Earnshaw's theorem.
 - g. Write two types of Gauge transformation and mention their significance.
 - h. What is the use of the Hertz potential?
 - i. What is the relation of skin depth with frequency?
 - j. Does refractive index of a material has any role in polarization? If yes state the same.

1 M-51223 (S36)-2518

SECTION-B

- 2. Describe the models of molecular polarizability.
- 3. Find $\nabla \cdot \vec{A} = ?$, where \vec{A} is the vector potential. Also rewrite Ampere's law in terms of \vec{A} .
- 4. Find the maximum torque on a 200-turn square loop of a wire of 121 cm² area that carries 15.0 A of current in a field of 2.50Tesla.
- 5. Define and compare Dirichlet and Neumann boundary conditions with examples.
- 6. Suppose *q* charge is held at a height *d* above a grounded infinite conducting plane. What is the potential in the region above the plane?
- 7. A parallel plate capacitor is filled with a material having permittivity $\varepsilon = 70\varepsilon_0$ and permeability $\mu = \mu^0$ and resistivity 0.3 Ω m. An alternating signal $V = V_0 \sin(2 \pi v t)$ is applied across the plates of the capacitor. Calculate the ratio of conduction current density to displacement current density.
- 8. A light of wavelength 5600Å incidents on a glass plate (refractive index is 1.48) kept in air. Determine the reflection and transmission coefficient and draw a conclusion from your result.

SECTION-C

- 9. Do multipole expansion of the energy of a charge distribution in an external field and identify the contribution of monopole, dipole and quadrupole.
- 10. State and prove Poynting theorem. Mention its significance.
- 11. a) What are the characteristics of an EM waveguide? Define TE and TM modes. Show whether TEM modes can occur in a hollow metallic waveguide.
 - b) Write a brief note on cavity resonators.

2 M-51223 (S36)-2518