

Roll No. Total No. of Pages: 03

Total No. of Questions: 09

M.Sc.(Computer Science) (2015 & Onwards) (Sem.-3) **OPTIMIZATION TECHNIQUES**

Subject Code: MSC-301 Paper ID: [A3168]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTIONS-A, B, C & D contains TWO questions each carrying TEN marks each and students has to attempt any ONE question from each SECTION.
- SECTION-E is COMPULSORY consisting of TEN questions carrying TWENTY 2. marks in all.
- 3. Use of non-programmable scientific calculator is allowed.

SECTION-A

Q1. a) Limitation of Linear Programming Problems.

(5)

b) Max
$$Z = 17 X_1 + 51 X_2$$

(5)

Subject to $X_1 + 16 X_2 \le 240$

Where as $X_1 \& X_2 \ge 0$

- $5 X_1 + 2X_2 \le 240$ $5 X_1 + 2X_2 \le 162$ $X_2 \le 50$ $X_1 \ge 0$ i) Find the optimal solution to the L.P.P.
- ii) Discuss the effect of changing the availability from (230, 160, 40) to (240, 150, 42).
- Q2. a) Explain Primal and Dual Problem.

(3)

b) Use Dual Simplex Method to Solve the Problem.

(7)

Min
$$Z = 2 X_1 + 3 X_3$$

Subject to $2X_1 - X_2 - X_3 \ge 3$

$$X_1 - X_2 + X_3 \ge 2$$

Where X_1 ; X_2 , $X_3 \ge 0$

1 M-72103 (S6)-2323

SECTION-B

Q3. Solve the Transportation Table to find Initial Basic Feasible Solution using **Least Cost Method.** (10)

	D1	D2	D3	D4	Supply
S1	19	30	50	10	7
S2	70	30	40	60	9
S3	40	8	70	20	18
Demand	5	8	7	14	34

Q4. a) Differentiate between Transport and assignment problem.

(3)

b) National oil Co. has three refineries and four Depots Transportation costs per ton & requirements are given below. (7)

	\mathbf{D}_1	\mathbf{D}_2	D_3	$\mathbf{D_4}$	Capacity
P ₁	5	7	13	10	700
P ₂	8	6	14	13	400
P ₃	12	10	9	11	800
Requirement	300	600	700	400	

Determine optimal allocation of output.

SECTION-C

- Q5) What is probability? Explain the Addition and multiplication law of Probability. (10)
- Q6) What is dynamic programming? Explain some salient characteristics of this approach that distinguish it from other techniques of Operations research. (10)

2 | M-72103 (S6)-2323

SECTION-D

- Q7) Differentiate between a Linear Programming and Integer Programming and discuss Integer Programming using suitable example. (10)
- Q8) Discuss the Gomory Method using suitable example. (10)

SECTION-E

Q9) Answer briefly: (2×10)

- a) Explain Linear Programming.
- b) Discuss Degeneracy in Transportation problem.
- c) What is Decision Theory?
- d) Explain Feasible solution.
- e) Explain Branch and Bound Techniques.
- f) What do you mean by Unbalanced Transportation Problems?
- g) What is dual-primal relation?
- h) State and explain Non-Degenerate Basic feasible solution of an L.P.P.
- i) Express Addition and multiplication law of Probability.
- j) What is Operations Research?

3 | M-72103 (S6)-2323