www.FirstRanker.com

www.FirstRanker.com

	I No. Land Community of Questions: 09	Total No. of Pages: 02
	M.Sc.(Physics) (2015 to 2017) (CONDENSED MATTER PHYS Subject Code: MPH-304 Paper ID: [72617]	Sem3) SICS
Tim	e: 3 Hrs.	Max. Marks: 100
INS7 1.	TRUCTIONS TO CANDIDATES: Attempt FIVE questions in all including the compulso	ry question no.9
Q1	(a) Derive an expression for the local electric field acti Explain the terms, depolarization field and Lorentz field	
	(b) Deduce Clausius-Mosotti relation and explain its use constant of solids.	e in predicting the dielectric (8)
Q2	(a) Explain the phenomenon of spontaneous polarisation Discuss the ferroelectric domain theory.	on in ferroelectric materials. (3+5=8)
	(b) What are polarons? Derive Kramers-Kronig relations response of a linear passive system.	to find the real part of the (2+10=12)
Q3	(a) Deduce Boltzmann transport equation.	(12)
	(b) Discuss the thermoelectric phenomenon in solids.	(8)
Q4	(a) Discuss the basic concepts of quasi particles.	(8)
	(b) Determine the Hartree-Fock equation for one electron sy	ystem. (12)
Q5	(a) What is the significance of tight binding approximation energy in two-band Hubbard model?	on in solid? How to calculate (6+6=12)
	(b) Write the electronic and magnetic properties of oxides.	(8)
Q6	(a) Calculate the singlet-triplet energy splitting of two Heitler- London approximation.	electron system by applying (12)
	(b) Explain the Heisenberg's exchange interaction in ferrom	nagnetism. (8)
1 M	I-72617	(S17)-1727

- **Q**7 (a) What is coherence length? Discuss in detail Ginzburg-Landau theory which leads to explain successfully various properties exhibited by superconductors. (4+8=12)
 - (b) Distinguish between type I and type II superconductors. (8)
- Q8 (a) Derive the London equations for superconductivity. Show that London equations could explain the Meissner effect and flux penetration. (8+4=12)
 - (b) Give brief out line of BCS theory of superconductivity. (8)

09 **Answer briefly:**

- (a) What are piezoelectric materials?
- (b) What is spontaneous magnetisation?
- (c) What are polarons?
- (d) What are Mott insulators?
- (e) Explain spintronics.
- (f) What is critical current density?
- (g) What are multiferroic materials?

MANN FIRST PARKET COM (h) What are Cooper pairs? $(8 \times 2.5 = 20)$

2 M-72617 (S17)-1727