www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions : 07

FirstRanker.com

M.Sc Mathematics (2017 Batch) (Sem.-3) NUMBER THEORY AND CRYPTOGRAPHY Subject Code : MSM-302 Paper ID : [75382]

Time : 3 Hrs.

Max. Marks: 80

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

1. Answer briefly :

- (a) If $p \neq 5$ is an odd prime, prove that either $p^2 1$ or $p^2 + 1$ is divisible by 10.
- (b) Find order of 3, modulo 23.
- (c) Find the index of 5 relative to each of the primitive roots of 13.
- (d) Show that μ is a multiplicative function.
- (e) Find the remainder when 2(26!) is divided by 29.
- (f) Show that $\sqrt{2}$ is irrational.
- (g) Evaluate Legendre Symbol (7/13).
- (h) Show that $\phi(2n) = \phi(n)$, if n is odd integer.

SECTION-B

2. (a) If $p \neq 5$ is an odd prime, prove that either $p^2 - 1$ or $p^2 + 1$ is divisible by 10.

1 M- 75382

www.FirstRanker.com

www.FirstRanker.com

- (b) State and prove Chinese Remainder Theorem.
- 3. (a) For what value of $n \ge 1$, 1! + 2! + 3! + ... n! is a perfect square.
 - (b) State and prove Wilson's Theorem and it's converse.
- 4. (a) Determine whether the 1-56947-303-10 is a correct ISBN (International Standard Book Number) or not. Justify your answer.
 - (b) Let *r* be a primitive root of the odd prime *p*. Prove the following:
 - i. If $p \equiv 1 \pmod{4}$, then -r is also a primitive root of p.
 - ii. If $p \equiv 3 \pmod{4}$, then -r has order $(p 1)/2 \mod p$.

SECTION-C

5. (a) Use indices to solve the congruences: $7x^3 = 3(mod_{11})$

(b) Evaluate Legendre Symbol: (19/23)

6. (a) If *n* is a positive integer, show that

$$\mu(n)\mu(n+1)\mu(n+2)\mu(n+3) = 0.$$

(b) If p and q are distinct primes, prove that for any integer a.

$$pq \mid a^{pq} - a^p - a^q + a.$$

- 7. (a) In RSA, given N=187 and the encryption key (E) as 17, find out the corresponding private key (D).
 - (b) Use the Hill cipher

$$C_1 \equiv 5P_1 + 2P_2 \pmod{26}$$

 $C_2 \equiv 3P_1 + 4P_2 \pmod{26}$

to encipher the message "GIVE THEM TIME".