Roll No. \square Total No. of Pages : 02
Total No. of Questions : 07

M.Sc Mathematics (2017 Batch) (Sem.-3)
 NUMBER THEORY AND CRYPTOGRAPHY
 Subject Code : MSM-302
 Paper ID : [75382]

Time : 3 Hrs.
Max. Marks : 80

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
2. SECTION - B \& C. have THREE questions in each section carrying SIXTEEN marks each.
3. Select atleast TWO questions from SECTION - B \& C EACH.

SECTION-A

1. Answer briefly :
(a) If $p \neq 5$ is an odd prime, prove that either $\mathrm{p}^{2}-1$ or $\mathrm{p}^{2}+1$ is divisible by 10 .
(b) Find order of 3, modulo 23.
(c) Find the index of 5 relative to each of the primitive roots of 13.
(d) Show that μ is a multiplicative function.
(e) Find the remainder when $2(26$!) is divided by 29 .
(f) Show that $\sqrt{2}$ is irrational.
(g) Evaluate Legendre Symbol (7/13).
(h) Show that $\phi(2 \mathrm{n})=\phi(\mathrm{n})$, if n is odd integer.

SECTION-B

2. (a) If $\mathrm{p} \neq 5$ is an odd prime, prove that either $p^{2}-1$ or $p^{2}+1$ is divisible by 10 .
(b) State and prove Chinese Remainder Theorem.
3. (a) For what value of $\mathrm{n} \geq 1,1!+2$! +3 ! $+\ldots \quad \mathrm{n}$! is a perfect square.
(b) State and prove Wilson's Theorem and it's converse.
4. (a) Determine whether the 1-56947-303-10 is a correct ISBN (International Standard Book Number) or not. Justify your answer.
(b) Let r be a primitive root of the odd prime p. Prove the following:
i. If $\mathrm{p} \equiv 1(\bmod 4)$, then $-r$ is also a primitive root of p.
ii. If $\mathrm{p} \equiv 3(\bmod 4)$, then $-r$ has order $(\mathrm{p}-\mathrm{l}) / 2$ modulo p.

SECTION-C

5. (a) Use indices to solve the congruences: $7 \mathrm{x}^{3}=3(\bmod 11)$
(b) Evaluate Legendre Symbol: (19/23)
6. (a) If n is a positive integer, show that

$$
\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0 .
$$

(b) If p and q are distinct primes, prove that for any integer a.

$$
\text { pq } \mid a^{p q}-a^{p}-a^{q}+a \text {. }
$$

7. (a) In RSA, given $\mathrm{N}=187$ and the encryption key (E) as 17, find out the corresponding private key (D).
(b) Use the Hill cipher

$$
\begin{aligned}
& C_{1} \equiv 5 P_{1}+2 P_{2}(\bmod 26) \\
& C_{2} \equiv 3 P_{1}+4 P_{2}(\bmod 26)
\end{aligned}
$$

to encipher the message "GIVE THEM TIME".

