Roll No. \square Total No. of Pages : 02
Total No. of Questions: 07

M.Sc Mathematics E-I (2017 Batch) (Sem.-3)
CODING THEORY
Subject Code : MSM-501
Paper ID : [75385]

Time: 3 Hrs.
Max. Marks : $\mathbf{8 0}$

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
2. SECTION - B \& C. have THREE questions in each section carrying SIXTEEN marks each.
3. Select atleast TWO questions from SECTION - B \& C EACH.

SECTION-A

Q1. Answer briefly :
a) Explain nearest neighbourhood decoding principal.
b) Define triple repetition code.
c) Give an example of a group code which is not a matrix code.
d) Give the procedure of parity check decoding.
e) Define Hammering code.
f) Define Vandermonde determinant.
g) How are Reed-Solomon codes and BCH codes related?
h) Define Cyclic codes.

SECTION-B

Q2. a) For a code (D, E) to correct all sets of k or fewer errors, prove that it is necessary that the minimum distance between code words be at least $2 \mathrm{k}+1$ (it being given that the nearest neighbour decoding principle holds).
b) A binary code with minimum distance $2 \mathrm{k}+1$ is capable of correcting any pattern of k or fewer errors.

Q3. a) Establish that $(\mathrm{m}, \mathrm{m}+1)$ parity check code is a group code.
b) Prove that the minimum distance of any Hamming code is 3 .

Q4. a) When are two codes C and C^{\prime} of length n , said to be equivalent?
b) Enlist the steps of Syndrome decoding procedure.

SECTION-C

Q5. a) Let F be a field and $\mathrm{f}(\mathrm{X}) \mathrm{eF}[\mathrm{X}]$ be an irreducible polynomial. Then prove that $\mathrm{F}[\mathrm{X}] /(/(\mathrm{X}))$ is a field.
b) Let F be a field and $f(X) e F[X]$. Then prove that there exists a splitting field of $f(X)$ over F.

Q6. a) Establish that the polynomial code with symbols in F and encoding polynomial $\mathrm{g}(\mathrm{X})$ has minimum distance at least d.
b) Prove that the only binary MDS codes are the trivial codes.

Q7. Let C be a linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code over F with a parity check matrix H . Then prove that C is an MDS code if every $\mathrm{n}-\mathrm{k}$ columns of H are linearly independent.

