www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions : 07

FirstRanker.com

M.Sc (Mathematics E-I) (2017 Batch) (Sem.-3) OPERATIONS RESEARCH Subject Code : MSM-502 Paper ID : [75386]

Time : 3 Hrs.

Max. Marks: 80

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

- 1. (a) Write major steps in the solution of a LPP by graphical method.
 - (b) What do we mean by objective function?
 - (c) Discuss limitations of linear programming problem.
 - (d) Explain the concept of sensitivity analysis.
 - (e) What is a balanced transportation problem?
 - (f) Explain the nature of travelling salesman problem.
 - (g) Write Kuhn Tucker conditions for constrained optimization.
 - (h) Explain, in brief, gradient based methods for multivariable optimization.

SECTION-B

- 2. (a) Solve the following LP problems graphically Maximize Z = 300x + 400y subject to the constraints $5x + 2y \le 180$, $3x + 3y \le 135$, $x, y \ge 0$.
 - (b) Use Simplex method to : Maximize Z = 6x + 7y, subject to the constraints $7x + 6y \le 42$, $5x + 9y \le 45$, $x y \le 4$, $x, y \ge 0$.
- 3. Solve the following LPP by Big M method

Maximize $Z = 3x_1 + 2x_2 + 5x_3$ subject to the constraints

 $x_1 + 2x_2 + x_3 \le 430, \ 3x_1 + 2x_3 \le 460, \ x_1 + 4x_2 \le 420, \ x_1, \ x_2, \ x_3 \ge 0.$

4. Explain the concept of duality in linear programming. Solve by dual Simplex method Minimize $Z = 10x_1 + 6x_2 + 2x_3$ subject to the constraints

 $-x_1 + x_2 + x_3 \ge 1, \ 3x_1 + x_2 - x_3 \ge 2, \ x_1, \ x_2, \ x_3 \ge 0.$

1 M-75386

(S30)-2231

www.FirstRanker.com

www.FirstRanker.com

SECTION-C

Source	Destination				Availability	
	D1	D2	D3	D4	Availability	
01	21	16	25	13	11	
02	17	18	14	23	13	
03	32	27	18	41	19	
Requirement	6	10	12	15	43	

5. (a) Solve the following transportation problem :

(b) Solve the following assignment problem to find the maximum total expected sale.

	Area	Ι	Π	Ш	IV
	А	42	35	28	21
Salesman	В	30	25	20	15
	С	30	25	20	15
	D	24	20	16	12

6. Discuss applications of PERT/CPM techniques.

A project has the following time schedule :

Activity	Time in week	Activity	Time in week
1-2	4	5-7	8
1-3	1	6-8	1
2-4	120	7-8	2
3-4	5	8-9	1
3-5	6	8-10	8
4-9	5	9-10	7
5-6	4		

Construct PERT network and compute critical path and its duration.

- 7. (a) Using Kuhn Tucker conditions Minimize $(x 1)^2 + (y 5)^2$ subject to the constraints $-x^2 + y \le 4, -(x 2)^2 + y \le 3.$
 - (b) Using successive quadratic estimation method find the minimum of the single variable function $f(x) = x^2 + 54/x$.