Roll No.

Total No. of Pages : 02
Total No. of Questions: 07

M.Sc (Mathematics E-I) (2017 Batch) (Sem.-3) OPERATIONS RESEARCH
 Subject Code : MSM-502
 Paper ID : [75386]

Time : 3 Hrs.
Max. Marks : $\mathbf{8 0}$

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
2. SECTION - B \& C. have THREE questions in each section carrying SIXTEEN marks each.
3. Select atleast TWO questions from SECTION - B \& C EACH.

SECTION-A

1. (a) Write major steps in the solution of a LPP by graphical method.
(b) What do we mean by objective function?
(c) Discuss limitations of linear programming problem.
(d) Explain the concept of sensitivity analysis.
(e) What is a balanced transportation problem?
(f) Explain the nature of travelling salesman problem.
(g) Write Kuhn Tucker conditions for constrained optimization.
(h) Explain, in brief, gradient based methods for multivariable optimization.

SECTION-B

2. (a) Solve the following LP problems graphically Maximize $\mathrm{Z}=300 x+400 y$ subject to the constraints $5 x+2 y \leq 180,3 x+3 y \leq 135, x, y \geq 0$.
(b) Use Simplex method to : Maximize $\mathrm{Z}=6 x+7 y$, subject to the constraints $7 x+6 y \leq$ $42,5 x+9 y \leq 45, x-y \leq 4, x, y \geq 0$.
3. Solve the following LPP by Big M method

Maximize $\mathrm{Z}=3 x_{1}+2 x_{2}+5 x_{3}$ subject to the constraints
$x_{1}+2 x_{2}+x_{3} \leq 430,3 x_{1}+2 x_{3} \leq 460, x_{1}+4 x_{2} \leq 420, x_{1}, x_{2}, x_{3} \geq 0$.
4. Explain the concept of duality in linear programming. Solve by dual Simplex method Minimize $\mathrm{Z}=10 x_{1}+6 x_{2}+2 x_{3}$ subject to the constraints
$-x_{1}+x_{2}+x_{3} \geq 1,3 x_{1}+x_{2}-x_{3} \geq 2, x_{1}, x_{2}, x_{3} \geq 0$.

SECTION-C

5. (a) Solve the following transportation problem :

Source	Destination				Availability
	D1	D2	D3	D4	
01	21	16	25	13	11
02	17	18	14	23	13
03	32	27	18	41	19
Requirement	6	10	12	15	43

(b) Solve the following assignment problem to find the maximum total expected sale.

Salesman	Area	I	II	III	IV
	A	42	35	28	21
	B	30	25	20	15
	C	30	25	20	15
	D	24	20	16	12

6. Discuss applications of PERT/CPM techniques.

A project has the following time schedule :

Activity	Time in week	Activity	Time in week
$1-2$	4	$5-7$	8
$1-3$	1	$6-8$	1
$2-4$	1	$7-8$	2
$3-4$	5	$8-9$	1
$3-5$	6	$8-10$	8
$4-9$	5	$9-10$	7
$5-6$	4		

Construct PERT network and compute critical path and its duration.
7. (a) Using Kuhn Tucker conditions Minimize $(x-1)^{2}+(y-5)^{2}$ subject to the constraints $-x^{2}+y \leq 4,-(x-2)^{2}+y \leq 3$.
(b) Using successive quadratic estimation method find the minimum of the single variable function $f(x)=x^{2}+54 / x$.

