

Roll No.					Total No. of Pages: 02
					1014111010114900101

Total No. of Questions: 09

M.Sc. (IT) (2015 Onwards) (Sem.-4) THEORY OF COMPUTATION

Subject Code : MSIT-403 Paper ID : [74115]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTIONS-A, B, C & D contains TWO questions each carrying TEN marks each and students have to attempt any ONE question from each SECTION.
- 2. SECTION-E is COMPULSORY consisting of TEN questions carrying TWENTY marks in all.

SECTION-A

1. Construct the finite automata corresponding to the following regular expression:

$$(0+1)*(00+11)(0+1)*$$

- 2. Prove that the class of languages accepted by finite automata is closed under:
 - a. Union.
 - b. Complementation.
 - c. Intersection.

SECTION-B

- 3. What are Context Free Grammars? How are they different from context free language? Discuss various normal forms for context free grammars in brief.
- 4. a. State the principle of pumping lemma. Also discuss its various applications.
 - b. Reduce the given CFG S \rightarrow abSb/a/aAb and A \rightarrow bS/aAAb to Chomsky Normal Form (CNF)

SECTION-C

- 5. Construct a push down automata that accepts the language $\{a^{2n} b^n \mid n \ge 0\}$ with empty stack. Prove the correctness of your construction.
- 6. Discuss Pushdown Automata in detail. How is it suitable for context free languages? Explain with the help of suitable examples.

1 | M - 7 4 1 1 5 (S 6) - 8 8 0

SECTION-D

- 7. Define a Turing machine. State the guidelines for the design of a Turing machine. What are the applications of Turing machine in language accepting and computing?
- 8. Elaborate the Chomsky's hierarchy in detail.

SECTION-E

- 9. Answer the following questions briefly:
 - a) Give an example of infinite set.
 - b) What is primitive recursive function?
 - c) Differentiate between DFA and NDFA.
 - d) Define Universal Turing Machine.
 - e) Differentiate between CFG and CSG.
 - f) State Kleene theorem.
 - g) What is top down parsing?
 - h) What do you mean by ambiguity in context free grammars?
 - i) Prove the following property of regular expressions: R + R = R.
 - j) State whether the following statement is true or not. Justify your answer as well: If L and M are regular languages then L + M, LM and L* are also regular.

2 | M - 7 4 1 1 5 (S 6) - 8 8 0