Model Question Paper-1 with effect from 2018-19
 (CBCS Scheme)

First/Second Semester B.E.Degree Examination Elements of Civil Engineering and Mechanics (Common to all Branches)

18CIV14/24 Time: 3 hrs

Max. Marks: 100
Note: Answer FIVE full questions, choosing one full question from each module Module - 1
1a Briefly explain the role of Civil Engineers in the infrastructure developmentof country.
b Explain briefly the scope of Civil Engineering in:
b) Geotechnical Engineering.
c State and explain principle of resolved parts.
4 m

2a Determine the resultant of the four forces acting on a body as shown in Fig. Q. 2 (a) with respect to point "O".

$$
\text { Fig. Q. } 2 \text { (a) }
$$

b A truck is to be pulled along a straight road as shown in Fig. Q. 2 (b). i) if the force applied along rope A is 5 kN inclined at 30°, what should be the force in the rope B, which is inclined at 20°, so that vehicle moves along the road. ii) if force of 4 kN is applied in rope B at what angle rope B should be inclined so that the vehicle is pulled along the road?

Fig. Q. 2 (b)
c What is the moment of a force? What are the various moments encountered in practice? Explain them.

Module - 2

3a What is meant by equilibrium of a rigid body? State the conditions of static equilibrium for coplanar non-concurrent force system?
b Find the reaction at the contact surface for two identical cylinders weighing 1000N each as shown in Fig. Q.3. (b)

8 m
 frictionless. Determine tension in different parts of the string. Also find W_{1} and W_{2}.

OR

4a Explain briefly: 1) angle of repose 2) Cone of friction.
b What is the value of `P` in the system shown in Fig. Q. 4 (b) to cause the motion to impend? Assume the Pulley is smooth and the coefficient of friction between the other contact surfaces is 0.2 .

Fig. Q. 4 (b)
c A uniform ladder of length 20 m rests against a vertical wall with which it makes an angle of 45°, the coefficient of friction between the ladder and the wall and ground respectively being $1 / 3$ and $1 / 2$. If a man, whose weight is one half that of the ladder

8m ascends the ladder, how high will he be, when the ladder slips?

Module - 3
5a With sketch explain different types of supports and mark reaction line.
6 m
b A simply supported beam $A B$ of length 10 m carries the uniformly distributed load of intensity $20 \mathrm{kN} / \mathrm{m}$ over a length of 4 m at a distance 2 m from left support and two point loads 50 kN and 60 kN a distance 2 mand 6 m from left support respectively calculate the reaction RA and RB.

OR
6a List the steps followed in the analysis of truss by method of sections.
b Find the support reactions and member forces for pin jointed plane truss shown in Fig. Q. 6 (b).By method of joints.

Fig. Q. 6 (b).
Module - 4
7a Derivation of expression for centroid of Rectangle.
b Locate the centroid of the shaded area shown in the Fig.Q. 7 (b).with respect to OX and OY

6 m

Fig.Q. 7 (b).

shown inFig. Q. 8. (b). Also find radius of gyration.

Fig. Q. 8. (b)
Module -5
9a Define Acceleration, Uniform acceleration, Variable acceleration andAcceleration due to gravity
b A particle, starting from rest, moves in a straight line, whose equation of motion is given by $s=5 t^{3}-3 t^{2}+6$. Find the displacement, velocity and acceleration of the particle

14 m after 5 seconds.
c A stone is dropped into well and the splash of sound is heard after 9 seconds. Determine the height of drop from the water surface. Assume velocity of sound to be $330 \mathrm{~m} / \mathrm{sec}$.

OR

10a Explain briefly Rectilinear motion and Curvilinear motion.
4 m
b State D'Alembert's principle and mention its applications in Plane Motion.
8 m
c A particle is projected with a velocity of $20 \mathrm{~m} / \mathrm{s}$ in air at angle 'a' with the horizontal. The x and y co-ordinates of a point lying on the trajectory of the particle with respect to point of projection are 20 m and 8 m respectively. Find the angle of 8m projection of the particle.

