

www.FirstRanker.com

www.FirstRanker.com

18ELN14/24

Visvesvaraya Technological University, Belagavi

MODEL QUESTION PAPER

1st / 2nd Semester, B.E (CBCS)

Course: 18ELN14/24- Basic Electronics – Set no. 3

Note: (i) Answer five full questions selecting any one full question from each module.

(ii) Missing data may be suitably assumed

Time: 3 Hrs

Max. Marks: 100

		MODULE 1	
1	a	Explain the forward and reverse bias condition for a pn junction diode with neat diagram.	08M
	b	A half wave rectifier is fed from a supply of 230 V, 50 Hz with step down transformer of ratio 3:1. Resistive load connected is 10 K Ω . The diode forward resistance is 75 Ω and transformer secondary is 10 Ω . Calculate the DC load current, DC load voltage, efficiency and ripple factor.	06M
	c	Write a short note on the following: (i) Photo diode (ii) Light emitting diode	06M
		OR	
2	a	With neat circuit diagram and wave forms explain the working of a centre tapped full wave rectifier.	08M
	b	A Zener diode has a breakdown voltage of 10V. It is supplied from a voltage source varying between 20-40V in series with a resistance of 820Ω . Using an ideal Zener model, obtain the minimum and maximum Zener currents	06M
	c	Explain the features of LM7805 fixed regulator.	06M
	1	MODULE 2	
3	a	Explain the construction and operation of a p-channel JFET	08M
	b	With neat diagram explain the operation of a CMOS inverter.	06M
	c	With neat diagram explain the VI characteristics of an SCR.	06M
	1	OR	
4	a	Explain the characteristics of an n-channel JEFT.	06M
	b	With neat diagram, explain the characteristics of a enhancement type MOSFET.	08M
	c	With neat diagram explain the two transistor model of an SCR.	06M

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

		MODULE 3	
5	a	Explain the following with respect to op-amp (i) Input Impedance (ii) output impedance (iii) Slew rate (iv) CMRR (v) virtual ground	10M
	b	Derive an expression for the output voltage of an inverting amplifier.	06M
	c	The input to the basic differentiator circuit is a sinusoidal voltage of peak value of 10mV and frequency 1.5KHz. Find the output if, Rf=100K Ω and C1=1 μ F.	04M
		OR	
6	a	Derive an expression for the output voltage of an op-amp integrator.	06M
	b	Derive an expression for the output voltage of an inverting summer.	06M
	c	A non-inverting amplifier circuit has an input resistance of $10K\Omega$ and feedback resistance $60K\Omega$ with load resistance of $47K\Omega$. Draw the circuit. Calculate the output voltage, voltage gain, load current when the input voltage is 1.5V.	08M
		MODULE 4	
7	a	Explain how the transistor can be used as a switch and as an amplifier.	10M
	b	An amplifier has a high frequency response described by $A = \frac{A0}{1 + (j\omega/\omega^2)}$. Where in A ₀ =1000, ω_2 =104 rad/s. Find the feedback factor which will raise the upper corner frequency ω_2 to 105 Hz. What is the corresponding gain of the	04M
		amplifier? Find also the gain bandwidth product in this case.	
	c	With a neat circuit diagram, explain the working of RC phase shift oscillator.	06M
		OR	
8	a	List the advantages of negative feedback in an amplifier. Explain the voltage series feedback amplifier. Show that the gain band width product for a feedback amplifier is constant.	10M
	b	The frequency sensitivity arms of the Wein bridge oscillator uses $C_1=C_2=0.01\mu$ F and $R_1=10K\Omega$ while R_2 is kept variable. The frequency is to be varied from 10KHz to 50 KHz by varying R_2 . Find the minimum and maximum values of R_2 .	04M
	c	With a neat diagram explain the Astable operation of IC 555 timer.	06M
		MODULE 5	
9	a	Simplify the following Boolean expressions	08M
		(i) $Y = AB + AB$ (ii) $Y = AB + AC + BD + CD$ (iii) $Y = [B + CA](C + AB)$ (i) $Y = [AB + CA](C + AB)$	
	b	(iv) $Y = ABCD + ABCD + ABCD + ABCD$ With a neat circuit diagram and truth table, explain the working of a JK flip	06M
		flop.	00101

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

	c	With a neat diagram, explain the working of a communication system.	06M				
	OR						
10	a	Simplify and realize the following using NAND gates only	08M				
		$(i) \qquad Y = AC + ABC + ABC + AB + D$					
		(<i>ii</i>) $Y = A\dot{B}\dot{C} + \dot{A}\dot{B}\dot{C} + \dot{A}\dot{B} + \dot{A}\dot{C}$					
	b	With a neat circuit diagram and truth table, explain the full adder circuit.	06M				
	c	With a neat block diagram, explain the operating principle of the GSM system.	06M				

www.firstRanker.com