18ELN14/24

Visvesvaraya Technological University, Belagavi
 MODEL QUESTION PAPER
 $1^{\text {st }} / 2^{\text {nd }}$ Semester, B.E (CBCS)

Course: 18ELN14/24- Basic Electronics - Set no. 3
Note: (i) Answer five full questions selecting any one full question from each module.
(ii) Missing data may be suitably assumed

Time: 3 Hrs
Max. Marks: 100

MODULE 1			
1	a	Explain the forward and reverse bias condition for a pn junction diode with neat diagram.	08M
	b	A half wave rectifier is fed from a supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$ with step down transformer of ratio 3:1. Resistive load connected is $10 \mathrm{~K} \Omega$. The diode forward resistance is 75Ω and transformer secondary is 10Ω. Calculate the DC load current, DC load voltage, efficiency and ripple factor.	06M
	c	Write a short note on the following: (i) Photo diode (ii) Light emitting diode	06M
OR			
2	a	With neat circuit diagram and wave forms explain the working of a centre tapped full wave rectifier.	08M
	b	A Zener diode has a breakdown voltage of 10 V . It is supplied from a voltage source varying between $20-40 \mathrm{~V}$ in series with a resistance of 820Ω. Using an ideal Zener model, obtain the minimum and maximum Zener currents	06M
	c	Explain the features of LM7805 fixed regulator.	06M
N MODULE 2			
3	a	Explain the construction and operation of a p-channel JFET	08M
	b	With neat diagram explain the operation of a CMOS inverter.	06M
	c	With neat diagram explain the VI characteristics of an SCR.	06M
OR			
4	a	Explain the characteristics of an n-channel JEFT.	06M
	b	With neat diagram, explain the characteristics of a enhancement type MOSFET.	08M
	c	With neat diagram explain the two transistor model of an SCR.	06M

MODULE 3			
5	a	Explain the following with respect to op-amp (i) Input Impedance (ii) output impedance (iii) Slew rate (iv) CMRR (v) virtual ground	10M
	b	Derive an expression for the output voltage of an inverting amplifier.	06M
	c	The input to the basic differentiator circuit is a sinusoidal voltage of peak value of 10 mV and frequency 1.5 KHz . Find the output if, $\mathrm{Rf}=100 \mathrm{~K} \Omega$ and $\mathrm{C} 1=1 \mu \mathrm{~F}$.	04M
OR			
6	a	Derive an expression for the output voltage of an op-amp integrator.	06M
	b	Derive an expression for the output voltage of an inverting summer.	06M
	c	A non-inverting amplifier circuit has an input resistance of $10 \mathrm{~K} \Omega$ and feedback resistance $60 \mathrm{~K} \Omega$ with load resistance of $47 \mathrm{~K} \Omega$. Draw the circuit. Calculate the output voltage, voltage gain, load current when the input voltage is 1.5 V .	08M
MODULE 4			
7	a	Explain how the transistor can be used as a switch and as an amplifier.	10M
	b	An amplifier has a high frequency response described by $A=\frac{A 0}{1+(j \omega / \omega 2)}$. Where in $\mathrm{A}_{0}=1000, \omega_{2}=104 \mathrm{rad} / \mathrm{s}$. Find the feedback factor which will raise the upper corner frequency ω_{2} to 105 Hz . What is the corresponding gain of the amplifier? Find also the gain bandwidth product in this case.	04M
	c	With a neat circuit diagram, explain the working of RC phase shift oscillator.	06M
OR			
8	a	List the advantages of negative feedback in an amplifier. Explain the voltage series feedback amplifier. Show that the gain band width product for a feedback amplifier is constant.	10M
	b	The frequency sensitivity arms of the Wein bridge oscillator uses $\mathrm{C}_{1}=\mathrm{C}_{2}=0.01 \mu \mathrm{~F}$ and $\mathrm{R}_{1}=10 \mathrm{~K} \Omega$ while R_{2} is kept variable. The frequency is to be varied from 10 KHz to 50 KHz by varying R_{2}. Find the minimum and maximum values of R_{2}.	04M
	c	With a neat diagram explain the Astable operation of IC 555 timer.	06M
MODULE 5			
9	a	Simplify the following Boolean expressions (i) $Y=A \dot{B}+A B$ (ii) $Y=A B+A C+B D+C D$ (iii) $Y=(B+C A)(C+\dot{A} B)$ 	08M
	b	With a neat circuit diagram and truth table, explain the working of a JK flip flop.	06M

	c	With a neat diagram, explain the working of a communication system.	06 M	
OR				
10	a	Simplify and realize the following using NAND gates only (i) $\quad Y=A C+A B C+A B C+A B+D$ (ii) $\quad Y=A B \dot{B} \dot{C}+\dot{A} \dot{B} \dot{C}+\dot{A} \dot{B}+\dot{A} \dot{C}$	08 M	
	b	With a neat circuit diagram and truth table, explain the full adder circuit.	06 M	
	c	With a neat block diagram, explain the operating principle of the GSM system.	06 M	

