Model Question Paper-1 with effect from 2018-19 (CBCS Scheme)

USN \square

First Semester B.E. Degree Examination Calculus and Linear Algebra

(Common to all Branches)
Time: 3 Hrs
Max.Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module. Module-1

1. (a) With usual notation, prove that $1 / p^{2}=1 / r^{2}+1 / r^{4}[d r / d \theta]^{2}$.
(06 Marks)
(b) For the cardiod : $r=a(1-\cos \theta)$, show that ρ^{2} / r is constant.
(06 Marks)
(c) Show that the evolute of the parabola $y^{2}=4 a x$ is $27 a y^{2}=4(x-2 a)^{3}$.

OR

2. (a) Find the pedal equation of the curve : $r^{m}=a^{m}(\cos m \theta+\sin m \theta)$.
(b) Show that the radius of curvature for the catenary $y=c \cosh (x / c)$ at any point (x, y) varies as square of the ordinate at that point.
(c) Show that the angle between the pair of curves: $r=a \log \theta \& r=a / \log \theta$ is $2 \tan ^{-1} e$.

Module-2

3. (a) Using Maclaurin's series, prove that $\sqrt{1+\sin 2 x}=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{24}+\ldots$
(06 Marks)
(b) Evaluate (i) $\lim _{x \rightarrow 0}\left[\left(a^{x}+b^{x}+c^{x}\right) / 3\right]^{1 / x}$ (ii) $\lim _{x \rightarrow \pi / 2}[\cos x]^{(\pi / 2)-x}$.
(07 Marks)
(c) Examine the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$ for its extreme values.
(07 Marks)

OR

4. (a) Find $d u / d t$ at $t=0$, if $u=e^{x^{2}+y^{2}+z^{2}}$ and $x=t^{2}+1, y=t \cos t, z=\sin t$.
(06 Marks)
(b) If $u=y z / x, v=z x / y, w=x y / z$, then show that $\partial(u, v, w) / \partial(x, y, z)=4$.
(c) Find the maximum and minimum distances of the point $(1,2,3)$ from the sphere $x^{2}+y^{2}+z^{2}=56$. (07 Marks)

Module-3

5. (a) Evaluate : $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$
(b) Find by double integration the area lying between the circle $x^{2}+y^{2}=a^{2}$ and the line $x+y=a$ in the first quadrant.
(06 Marks)
(c) Show that $\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta=\pi$
6. (a) Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$.
(06 Marks)
(b) A pyramid is bounded by three coordinate planes and the plane $x+2 y+3 z=6$. Compute the volume by double integration.
(07 Marks)
(c) Evaluate: $\int_{0}^{1} x^{3 / 2}(1-x)^{1 / 2} d x$, by expressing in terms beta $\&$ gamma functions.

Module-4

7. (a) If the temperature of the air is $30^{\circ} \mathrm{C}$ and a metal ball cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 minutes, find how long will it take for the metal ball to reach a temperature of $40^{\circ} \mathrm{C}$.
(06 Marks)
(b) Find the orthogonal trajectories of the family of curves $\left[x^{2} / a^{2}\right] d x+\left[y^{2} /\left(b^{2}+\lambda^{2}\right)\right] d y=1$, where λ is a parameter.
(c) Solve : $\left[y^{4}+2 y\right] d x+\left[x y^{3}+2 y^{4}-4 x\right] d y=0$.

OR

8. (a) The current i in an electrical circuit containing an inductance L anda resistance R in series and, acted upon an e.m.f. $E \sin \omega t$ satisfies the differential equation $L[d i / d t]+R i=E \sin \omega t$. Find the value of the current at any time t, if initially there is no current in the circuit.
(b) Solve: $d y+\left[x \sin 2 y-x^{3} \cos ^{2} y\right] d x=0$
(c) Find the general and singular solution of $[p x-y \llbracket x-p y]=2 p$, by using the substitution $x^{2}=u \& y^{2}=v$
(07 Marks)

Module-5

9. (a) Find the rank of the matrix $\left[\begin{array}{rrrr}1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 2 & 5\end{array}\right]$ by applying elementary row operations.
(06 Marks)
(b) Using Rayleigh's power method, find dargest eigen value and eigen vector of the matrix:
$\left[\begin{array}{rrr}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$ by taking $X^{(0)}=[1,0,0]^{T}$ as initial eigen vector.(Perform 7 iterations)
(07 Marks)
(c) Use Gauss-Jordan method solve the system of equations:

$$
x+4 y-z=-5 ; x+y-6 z=-12 ; 3 x-y-z=4
$$

(07 Marks)
OR
10. (a) For what values λ and μ the system of equations $x+2 y+3 z=6 ; x+3 y+5 z=9 ; 2 x+5 y+\lambda z=\mu$, has (a) no solution (b) a unique solution and (iii) infinite number of solutions.
(06 Marks)
(b) Reduce the matrix $A=\left[\begin{array}{cc}-19 & 7 \\ -42 & 16\end{array}\right]$ into the diagonal form.
(07 Marks)
(c) Solve the system of equations $7 x+52 y+13 z=104 ; 3 x+8 y+29 z=71 ; 83 x+11 y-4 z=95$, using Gauss-Seidel method. (Carry out 4 iterations).
(07 Marks)

