Model Question Paper-1 with effect from 2018-19 (CBCS Scheme)

USN \square 18MAT21

Second Semester B.E. Degree Examination Advanced Calculus and Numerical Methods

(Common to all Branches)
Max.Marks: 100
Time: 3 Hrs
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

1. (a) Find the angle between the surfaces $x^{2}+y^{2}-z^{2}=4$ and $z=x^{2}+y^{2}-13$ at $(2,1,2)$
(06 Marks)
(b) If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$, find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at the point $(1,-1,1)$.
(07 Marks)
(c) Find the value of a, b, c such that $\vec{F}=\left(a x y+b z^{3}\right) \vec{i}+\left(3 x^{2}-c z\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$ is a conservative force field. Hence find the scalar potential ϕ such that $\vec{F}=\nabla \phi$.
(07 Marks)
OR
2. (a) Use Green's theorem to find the area between the parabolas $x^{2}=4 y$ and $y^{2}=4 x$.
(06 Marks)
(b) Using Gauss divergence theorem, evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$ over the entire surface of the region above $x y$-plane bounded by the cone $z^{2}=x^{2}+y^{2}$ and the plane $z=4$, where $\vec{F}=4 x z \vec{i}+x y z^{2} \vec{j}+3 z \vec{k}$.
(07 Marks)
(c) Find the work done by the force $\vec{F}=3 x^{2} \vec{i}+(2 x z-y) \vec{j}+z \vec{k}$, when it moves a particle from the point $t=0$ to $t=2$ along the curve $x=t, y=t^{2} / 4, z=3 t^{3} / 8$.
(07 Marks)

Module-2

3. (a) Solve: $\left(D^{3}+D^{2}-4 D-4\right) y=3 e^{-x}-4 x-6$, where $D=\frac{d}{d x}$.
(06 Marks)
(b) Solve: $\frac{d^{2} y}{d x^{2}}+y=\frac{1}{1+\sin x}$, using the method of variation of parameters.
(07 Marks)
(c) Solve: $\left(x^{2} D^{2}-3 x D+4\right) y=(1+x)^{2}$, where $D=\frac{d}{d x}$.
(07 Marks)

OR
4. (a) Solve: $\left(D^{3}+8\right) y=x^{4}+2 x+1$, where $D=\frac{d}{d x}$.
(06 Marks)
(b) Solve: $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=8 x^{2}+4 x+1$
(07 Marks)
Page 1 of
(c) The differential equation of the displacement $x(t)$ of a spring fixed at the upper end and a weight at its lower end is given by $10 \frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+200 x=0$. The weight is pulled down 0.25 cm , below the equilibrium position and then released. Find the expression for the displacement of the weight from its equilibrium position at any time t during its first upward motion.
(07 Marks)

Module-3

5. (a) Form the partial differential equation by eliminating the arbitrary constants from

$$
(x-a)^{2}+(y-b)^{2}+z^{2}=c^{2}
$$

(06 Marks)
(b) Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$, given that when $y=0, z=e^{x}$ and $z=e^{-x}$
(c) Derive one-dimensional wave equation in the standard form.

OR

6. (a) Form the partial differential equation by eliminating the arbitrary function from $f\left(x^{2}+y^{2}, z-x y\right)=0$
(b) Solve: $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$
(07 Marks)
(c) Solve one dimensional heat equation, using the method of separation of variables.

Module-4

7. (a) Test for the convergence or divergence of the series : $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$
(06 Marks)
(b) Solve Bessel's differential equation leading to $J_{n}(x)$.
(07 Marks)
(c) Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.

OR

8. (a) Test for the convergence or divergence of the series : $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$
(06 Marks)
(b) If α and β are two distinct roots of $J_{n}(x)=0$, prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0$ if $\alpha \neq \beta$.
(07 Marks)
(c) Use Rodrigues's formula to show that $P_{4}(\cos \theta)=\frac{1}{8}(35 \cos 4 \theta+20 \cos 2 \theta+9)$

Module-5

9. (a) Find a real root of the equation $x \sin x+\cos x=0$, near $x=\pi$ correct to four decimal places, using Newton- Raphson method.
(06 Marks
(b) Use an appropriate interpolation formula to compute $f(2.18)$ using the following data:
(07 Marks)

x	1.7	1.8	1.9	2.0	2.1	2.2
$f(x)$	5.474	6.050	6.686	7.389	8.166	9.025

(c) Use Weddle's rule to evaluate $\int_{-\pi / 2}^{\pi / 2} \cos x d x$, by dividing $[-\pi / 2, \pi / 2]$ into six equal parts.
(07 Marks)

OR

10. (a) Find a real root of $x \log _{10} x-1.2=0$, correct to three decimal places lying in the interval $(2,3)$, using Regula-Falsi method.
(b) Using Lagrange's interpolation formula to fit a polynomial for the following data:

x	2	10	17
y	1	3	4

(c) Using Simpson's $(3 / 8)^{\text {th }}$ rule, evaluate $\int_{0}^{3} \frac{d x}{(1+x)^{2}}$ taking 4 equidistant ordinates.

