

Model Question Paper-1 with effect from 2018-19 (CBCS Scheme)

USN

18MAT21

Second Semester B.E. Degree Examination Advanced Calculus and Numerical Methods

(Common to all Branches)

Time: 3 Hrs Max.Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

1. (a) Find the angle between the surfaces $x^2 + y^2 - z^2 = 4$ and $z = x^2 + y^2 - 13$ at (2,1,2)

(06 Marks)

(b) If $\vec{F} = \nabla(xy^3z^2)$, find $div\vec{F}$ and $curl\vec{F}$ at the point (1,-1,1).

(07 Marks)

(c) Find the value of a,b,c such that $\vec{F} = (axy + bz^3)\vec{i} + (3x^2 - cz)\vec{j} + (3xz^2 - y)\vec{k}$ is a

conservative force field. Hence find the scalar potential ϕ such that $\vec{F} = \nabla \phi$.

(07 Marks)

OR

2. (a) Use Green's theorem to find the area between the parabolas $x^2 = 4y$ and $y^2 = 4x$.

(06 Marks)

(b) Using Gauss divergence theorem, evaluate $\iint \vec{F} \cdot \hat{n} dS$ over the entire surface of the region above

xy-plane bounded by the cone $z^2 = x^2 + y^2$ and the plane z = 4, where $\vec{F} = 4xz\vec{i} + xyz^2\vec{j} + 3z\vec{k}$.

(07 Marks)

(c) Find the work done by the force $\vec{F} = 3x^2\vec{i} + (2xz - y)\vec{j} + z\vec{k}$, when it moves a particle from the

(07 Marks)

point t = 0 to t = 2 along the curve x = t, $y = t^2/4$, $z = 3t^3/8$.

Module-2

3. (a) Solve: $(D^3 + D^2 - 4D - 4)y = 3e^{-x} - 4x - 6$, where $D = \frac{d}{dx}$.

(06 Marks)

(b) Solve: $\frac{d^2y}{dx^2} + y = \frac{1}{1 + \sin x}$, using the method of variation of parameters.

(07 Marks)

(c) Solve: $(x^2D^2 - 3xD + 4)y = (1 + x)^2$, where $D = \frac{d}{dx}$.

(07 Marks)

OR

4. (a) Solve: $(D^3 + 8)y = x^4 + 2x + 1$, where $D = \frac{d}{dx}$.

(06 Marks)

(b) Solve: $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 8x^2 + 4x + 1$

(07 Marks)

www.FirstRanker.com

(c) The differential equation of the displacement x(t) of a spring fixed at the upper end and a weight at its lower end is given by $10 \frac{d^2x}{dt^2} + \frac{dx}{dt} + 200x = 0$. The weight is pulled down 0.25 cm, below the equilibrium position and then released. Find the expression for the displacement of the weight from its equilibrium position at any time t during its first upward motion.

(07 Marks)

Module-3

(a) Form the partial differential equation by eliminating the arbitrary constants from $(x-a)^2 + (y-b)^2 + z^2 = c^2$

(06 Marks)

(b) Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that when y = 0, $z = e^x$ and $z = e^{-x}$

(07 Marks)

(c) Derive one-dimensional wave equation in the standard form.

(07 Marks)

OR

6. (a) Form the partial differential equation by eliminating the arbitrary function from $f(x^2 + y^2, z - xy) = 0$

(06 Marks)

(b) Solve: $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$

(07 Marks)

(c) Solve one dimensional heat equation, using the method of separation of variables.

(07 Marks)

7. (a) Test for the convergence or divergence of the series : $\sum_{n=0}^{\infty} \frac{n!}{(n!)!}$

(06 Marks)

(b) Solve Bessel's differential equation leading to $J_n(x)$

(07 Marks)

(c) Express $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomials.

(07 Marks)

8. (a) Test for the convergence or divergence of the series : $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$

(06 Marks)

(b) If α and β are two distinct roots of $J_n(x) = 0$, prove that $\int_{\alpha}^{x} x J_n(\alpha x) J_n(\beta x) dx = 0$ if $\alpha \neq \beta$.

(07 Marks)

(c) Use Rodrigues's formula to show that $P_4(\cos\theta) = \frac{1}{8}(35\cos 4\theta + 20\cos 2\theta + 9)$

(07 Marks)

www.FirstRanker.com

Module-5

9. (a) Find a real root of the equation $x \sin x + \cos x = 0$, near $x = \pi$ correct to four decimal places, using Newton- Raphson method.

(06 Marks)

(b) Use an appropriate interpolation formula to compute f(2.18) using the following data:

(07 Marks)

х	1.7	1.8	1.9	2.0	2.1	2.2
f(x)	5.474	6.050	6.686	7.389	8.166	9.025

(c) Use Weddle's rule to evaluate $\int_{-\pi/2}^{\pi/2} \cos x dx$, by dividing $[-\pi/2, \pi/2]$ into six equal parts.

(07 Marks)

OR

10. (a) Find a real root of $x \log_{10} x - 1.2 = 0$, correct to three decimal places lying in the interval (2,3), using Regula-Falsi method.

(06 Marks)

(b) Using Lagrange's interpolation formula to fit a polynomial for the following data:

(07 Marks)

x	2	10	17	
у	1	3	4	

(c) Using Simpson's $(3/8)^{th}$ rule, evaluate $\int_{0}^{3} \frac{dx}{(1+x)^{2}}$ taking 4 equidistant ordinates. x)² tal *****

(07 Marks)