Model Question Paper-2 with effect from 2018-19 (CBCS Scheme)

USN

\square 18PHY12/22

First/Second Semester B.E.Degree Examination Engineering Physics

(Common to all Branches)
Max. Marks: 100
Time : 3 hrs
Note: 1. Answer FIVE full questions, choosing ONE full question from each module.
2. Physical constants: Speed of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; h=6.625 \times 10^{-34} \mathrm{JS} ; k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$; $N_{A}=6.02 \times 10^{63} / \mathrm{Kmole} ; \mathrm{m}_{e}=9.1 \times 10^{-31} \mathrm{~kg} ; e=1.6 \times 10^{-19} \mathrm{C}$.
$\underline{\text { Module - } 1}$
1 a. Starting form Hookes' law derive the differential equation for SHM. Explain the Characteristics of SHM.
(7 marks)
b. With a neat diagram explain the construction and working of Reddy tube. Mention any four applications of Shock waves
(10 marks)
c. A mass of 4.3 gm is attached to a spring of force constant $17 \mathrm{~N} / \mathrm{m}$. This mass spring system is executing SHM. Find the frequency of the external force which excites resonance in the system. Ignore the mass of the spring.
(3 marks)

OR

2 a. State and explain laws of conservation of mass, energy and momentum. ($\mathbf{6}$ marks)
b. What are damped oscillations? Derive the expression for decaying amplitude and hence discuss the case of critical damping
(10 marks)
c. A 20 gm oscillator with a natural frequency $10 \mathrm{rad} / \mathrm{s}$ is vibrating in damping medium. The damping force is proportional to the velocity of the vibrator. If the damping coefficient is 0.17 how does the oscillation decays?
(4 marks)

Module-2

3. a. Explain tensile stress and compressive stress. What are the engineering importances of elastic materials?
(6 marks)
b. Define lateral strain, linear strain and Poisson's ratio. Obtain the expression for Poisson's ratio
(10 marks)
c. What are torsional oscillations? Give the expression for time period of torsional oscillations. Mention the applications of torsional oscillations
(5 marks)
d. A wire of length 2 m and radius 2 mm is fixed to the center of a wheel. A torque of magnitude 0.0395 Nm is applied to twist the wire. Find the rigidity modulus of the wire if the angular twist is 0.038 rad
(4 marks)

OR

4. a. Define bending moment. Derive the expression for bending moment in terms moment of inertia.
(8 marks)
b. Derive the relation between bulk modulus (K), Young's modulus (Y) and Poisson's ratio. What are the limiting values of Poisson's ratio?
(8 marks)
c. A brass bar of length 1 m , area of cross section $0.01 \mathrm{~m}^{2}$ is clamped horizontally at one end. A weight of 1 kg is applied at the other end. What is the depression produced (Young's' modulus is $9.78 \times 10{ }^{10} \mathrm{Nm}^{2}$
(4 marks)

Module-3

5. a. Describe the concept of divergence. What is its physical significance? Derive Gauss divergence theorem
(9 marks)
b. With neat diagrams explain different types of optical fiber. Define V number (7marks)
c. A coil of mean radius 8 cm and having 100 turns carries current of 10A. Calculate the magnetic field produced at the center of the coil and at a point on the axis at a distance 4 cm from the center
(4marks)

OR

6. a. With the help of Block diagram, explain point to point communication using optical fiber. Mention the merits and de merits of optical fiber communications
(10marks)
b. What is displacement current?. Derive the expression for displacement current (6marks)
c. An optical fiber has core refractive index 1.5 and clad refractive index 3% less than that of core. Calculate NA, angle of acceptance, and internal critical angle
(4marks)

Module-4

7. a. Staring from Schrodinger's time independent wave equation, derive the expression for energy eigen value and eigen function for an electron present in 1-d potential well of infinite depth. ($\mathbf{1 0} \mathbf{~ m a r k s}$)
b. What is a laser range finder? Give the qualitative explanation of construction and working of laser range finder
c. An electron is trapped in a 1-D potential well of infinite height and width of 0.1 nm . Calculate the energy required to excite it from its ground state to fifth excited state

OR

8. a. Explain the terms (a) spontaneous emission, (b) stimulated emission (c) population inversion (d) active medium and (e) resonance cavity
(10 marks)
b. What are the properties of a wave function? Give the qualitative explanation of Max Born's interpretation of wave function
(6 marks)
c. A laser operating at 632.8 nm emits 3.182×10^{16} photons per second. Calculate the output power of the laser if the input power is 100 watt. Also find the percentage power converted into coherent light energy
(4 marks)

Module - 5

9. a. Give the assumptions of quantum free electron theory. Discuss two success of quantum free electron theory
(8 marks)
b. What are dielectrics? Give the relation between dielectric constant and polarization. Discuss solid, liquid and gaseous dielectrics with one example for each.
(8 marks)
c. Define Fermi temperature. Calculate Fermi temperature for a metal whose Fermi energy is 7 eV
(4 marks)

OR

10. a. Describe Fermi level in intrinsic semiconductor and hence obtain the expression for Fermi energy in terms of energy gap of intrinsic semiconductor
b. Give a brief account for Fermi-Dirac distribution theory. Obtain the expression for Fermi energy at 0 K
(8marks)
c. The conductivity and Hall coefficient of an n-type semiconductor are $112 / \Omega \mathrm{m}$ and $1.25 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{C}$ respectively. Calculate the charge carrier concentration and electron mobility
(4 marks)
