First Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Electronics

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

5 a. Explain the block diagram of an operational amplifier.
(06 Marks)
b. Explain the operation of an op-amp as a non-inverting amplifier with neat diagram and waveforms.
(06 Marks)
c. Define the following terms with respect to op-amp.
(i) CMRR
(ii) Slewrate
(iii) pp offset voltage and current
) pp bias current
(08 Marks)

OR

c. For an op-amp circuit shown in Fig.Q6(c), find the output Vo 1 and Vo ${ }_{1}$.

Fig.Q6(c)
Also write the function of each op-amp used.
(06 Marks)

Module-4

7 a. With neat circuit diagram explain how transistor is used as an voltage amplifier. Derive an equation for A .
(08 Marks)
b. Explain the voltage series feedback circuit and derive an equation for voltage gain A_{v} with feedback.
(04 Marks)
c. Explain RC phase-shift oscillator with circuit diagram and necessary equations.
(08 Marks)

OR

8 a. With neat circuit diagram explain how transistor can be used to switch an LED ON/OFF ana give the necessary equation.
(08 Marks)
b. The transistor in common emitter configuration is shown in Fig.Q8(b) with $\mathrm{It}_{\mathrm{c}}=10 \mathrm{kfl}$ and PDC $=200$ determine
(i) VCE at $\mathrm{V}_{\mathrm{i}},=0$
(ii) $\mathrm{IB}(\mathrm{min})$ to saturate the collector current
(iii) $\mathrm{Rti}(\mathrm{nax})$ when $\mathrm{Vi}_{\mathrm{n}}=5 \mathrm{~V}$. $\operatorname{Vcr}(.1)$ can be neglected.
(04 Marks)

Fig.Q8(b)
c. Explain the operation of IC-555 as an Astable oscillator with neat circuit diagram and necessary equation.
(08 Marks'

Module-5

9 a. Design Full adder circuit and implement it using basic gates.
(10 Marks)
b. Explain the basic elements of communication system with block diagram.
(06 Marks)
c. Find
(i) $(1010111011110101)_{2}=(?) 6$
(ii) (FA876) $16=?)^{2}$
(04 Marks)

OR

10 a. State and prove De Morgan's theorems.
(04 Marks)
b. Explain the working of a 3-bit ripple counter with neat circuit diagram and timing diagrams.
(08 Marks)
c. Explain the working of RS flip flop with truth table and diagram.
(06 Marks)
d. Subtract the following using 2's complement:
(i) 11100-10011
(02 Marks)

