

www.FirstRanker.com

www.FirstRanker.com

## 

USN

**15MAT31** 

(06 Marks)

(05 Marks)

#### Ent\*. Third Semegfer B.E. Degree Examination, Dec.2018/Jan.2019 **Engineering Mathematics - III**

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

a. An alternating current after passing through a rectifier has the form, 1 I, sin x for 0 < x < rcI

| = |                  |
|---|------------------|
| 0 | for 7C < X < 27C |

where  $I_0$  is the maximum current and the period is= 2m. Express I as a Fourier series.

(08 Marks) b. Determine the constant term and the first cosine and sine terms of the Fourier series ex<sub>a</sub> ansion of from the followin data: (08 Marks)

| X | 0 | 45  | 90 | 135 | 180 | 225 | 270 | 315 |
|---|---|-----|----|-----|-----|-----|-----|-----|
| у | 2 | 1.5 | 1  | 0.5 | 0   | 0.5 | 1   | 1.5 |

OR

a. Obtain the Fourier series expansion of the function, f(x)2 in 7C, TO and hence deduce that.

 $\frac{1}{12} \pm \frac{1}{32} + \frac{1}{52} \quad \dots = \frac{\pi}{8}$ 

b. Find the Fourier series expansion of the function,

 $f(x) = \frac{70x \text{ in } 0 x}{742 - x) \text{ in } 1 x 2}$ 

The following table gives the variations of periodic current over a period. с.

| t(sec)       | 0    | Η    |      | Í   | 2T         | 5T     | Т    |  |
|--------------|------|------|------|-----|------------|--------|------|--|
| . 1.         |      |      |      | cNi | <b>Z</b> 3 | 6      |      |  |
| A(amplitude) | 1.98 | 1.30 | 1.05 | 1.3 | - 0.88     | - 0.25 | 1.98 |  |

Show by harmonic analysis that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of first harmonic. (05 Marks)

#### Module-2

- a. Find the complex Fourier transform of the function f(x) =3 . Hence evaluate 0 for > a
  - $\lim_{x \to \infty} \frac{\sin X}{dx} dx$ . (06 Marks)

{1 for

- b. Find the Fourier sine transform of  $\frac{e^{-ax}}{a}$ (05 Marks)
- $3z^{2} + 2z$ c. Compute the inverse z-transforms of (05 Marks) (5z-1)(5z+2)1 of 3

# important Note

#### www.FirstRanker.com



www.FirstRanker.com

www.FirstRanker.com

#### 15MAT31

(06 Marks)

(05 Marks)

| ſ | Л. | D |  |
|---|----|---|--|
| L | ,  | к |  |
|   |    |   |  |

| 4 | a. | Find the z-transform of $e'n + \sin n$                           |                                      | (06 Marks) |
|---|----|------------------------------------------------------------------|--------------------------------------|------------|
|   | b. | Solve $y_{0+2} + 6y_{0} + 9y_{0} = 2n$ with $y_{0} = y_{0} = 2n$ | 0 using z-transform.                 | (05 Marks) |
|   | C. | Find the Fourier cosine transform of, $f(x) =$                   | $4x  0 < x < 1 \\ 4 - x  1 < x < 4.$ | (05 Marks) |
|   |    |                                                                  | x > 4                                |            |

#### Module-3

5 a. Find the Correlation coefficient and, equations of regression lines for the following data:  $x \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$ 

| у | 2 | 5 | 3 | 8 | 7 |  |
|---|---|---|---|---|---|--|
|   |   |   |   |   |   |  |

b. Fit a straight line to the following data:

| Х | 0 | 1   | 2   | 3   |     |  |
|---|---|-----|-----|-----|-----|--|
| у | 1 | 1.8 | 3.3 | 4.5 | 6.3 |  |

c. Find a real root of the equation xe <sup>x</sup> = cos x correct to three decimal places that lies between 0.5 and 0.6 using Regula-falsi method. (05 Marks)

#### OR

6 a. The following regression equations were obtained from a correlation table.

y =0.516x+33.73

x = 0.516y + 32.52

Find the value of (i) Correlation coefficient (ii) Mean of x's (iii) Mean of y's.

b. Fit a second degree parabola to the following data:

| <br>i a secona i | and para |     | iono inng a |     |     |     |            |
|------------------|----------|-----|-------------|-----|-----|-----|------------|
| Х                | 1.0      | 1.5 | 2.0         | 2.5 | 3.0 | 3.5 | 4.0        |
| у                | 1.1      | 1.3 | 1.6         | 2.0 | 2.7 | 3.4 | 4.1        |
|                  |          |     |             |     |     |     | (05 Marks) |

c. Use Newton-Raphson's method to find a real root of  $x \sin x + \cos x = 0$  near  $x = \pi$  carry out three iterations. (05 Marks)

#### Module-4

7 a. The following data gives the melting point of an alloy of lead and zinc, where t is the

temperature in  $\overline{C}$  and P is the percentage of lead in the alloy:

| P% | 60  | 70  | 80  | 90  |  |
|----|-----|-----|-----|-----|--|
| t  | 226 | 250 | 276 | 304 |  |

Find the melting point of the alloy containing 84% of lead, using Newton's interpolation formula. (06 Marks)

- b. Apply Lagrange's interpolation formula to find a polynomial which passes through the points (0, -20), (1, -12), (3, -20) and (4, -24) (05 Marks)
- c. Find the approximate value of  $\int_{0}^{2} V \cos d\theta$  by Simpson's  $-\frac{3}{8}$  rule by dividing it into 6 equal parts. (05 Marks)



### www.FirstRanker.com

www.FirstRanker.com

15MAT31

| OR                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------|
| 8 a. From the following table :                                                                                          |
| x° 10 20 30 40 50 60                                                                                                     |
| cosx 0.9848 0.9397 0.8660 0.7660 0.6428 0.5                                                                              |
| Calculate cos 25° using Newton's forward interpolation formula. (06 Marks)                                               |
| <sup>b.</sup> Use Newton's divided difference formula and find f(6) from the following data:                             |
| x : 5 7 11 13 17                                                                                                         |
| f(x) :   150   392   1452   2366   5202  (05 Marks)                                                                      |
| c. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using Weddle's rule by taking equidistant ordinates. (05 Marks)                |
|                                                                                                                          |
| Module-5 2                                                                                                               |
| 9 a. Find the area between the parabolas $y^2 = 4x$ and $x = 4y$ with the help of Green's theorem in a plane. (06 Marks) |
| b. Solve the variational problem 5 $(1(12xy + y^{12})dx = 0)$ under the conditions $y(0) = 3$ , $y(1) = 6$ .             |
| b. Solve the variational problem $3 (1/2xy + y) dx = 0$ under the conditions $y(0) = 3$ , $y(1) = 0$ .                   |
| (05 Marks)                                                                                                               |
| c. Prove that the shortest distance between two points in a plane is along the straight line                             |
| joining them. (05 Marks)                                                                                                 |
|                                                                                                                          |
| OR                                                                                                                       |
| 10 a. A cable hangs freely under gravity from the fixed points. Show that the shape of the curve is                      |
| a catenary. (06 Marks)                                                                                                   |
| b. Use Stoke's theorem to evaluate for $F = (x^2 + y^2)i - 2xyj$ taken around the rectangle bounded                      |
| by the lines $\mathbf{v} = \pm \mathbf{e} \cdot \mathbf{v} = \mathbf{f} \cdot \mathbf{v} = \mathbf{h}$ (05 Merlie)       |
| c. Evaluate ii(yzi + zxj + xyk).rids where S is the surface of the sphere x $^2$ + $^{y^2}$ + $^{z^2 = a^2}$ in the      |
|                                                                                                                          |
| first octant. (05 Marks)                                                                                                 |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |



#### www.FirstRanker.com

0