www.FirstRanker.com

17MAT31

Third Semester B.E. Degree Examination, June/July 2019 **Engineering Mathematics - ill**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

a. Obtain the fourier series of the function $f(x) = x - x^2$ in $-\pi$ x 7 and

hence deduce $\frac{Tr}{12} = \frac{1}{1^2} \cdot 1_{\frac{1}{2}} + \frac{1}{3} \cdot \frac{1}{4^2} + \dots$ **(08 Marks)**

b. Obtain the Half Range Fourier cosine series for the $1(x) = \sin x$ in [0, rt]. (06 Marks)

c. Obtain the constant term and the coefficients of first sine and cosine terms in the fourier expansion of y given

, 6							
x:	0	1	2	3	4	5	
y:	9	18	24	28	26	20	

(06 Marks)

² a. Obtain the Fourier series of [0, 27]and hence deduce that

(08 Marks)

b. Find the fourier half range cosine series of the function $f(x) = 2x - x^2$ in [0, 3]. (06 Marks)

c. Expre

Important Note:

			60									
y:	1.8	1,1	0.30	0.16	1.5	1.3	2.16	1.25	1.3	1.52	1.76	2.0

(06 Marks)

Module-2

fourier transform 3 a. Find the and hence deduce of $1^{-}(x) =$

$$\frac{\sin x - x \cos x}{x'} dx = \frac{600 \text{ Marks}}{4}$$

b. Find the fourier sine transform of and hence evaluate (06 Marks)

C. Obtain the z-transform of cosnO and sin no. (06 Marks)

OR

a. Find the fourier transform of f(x)

(08 Marks)

b. Find the fourier cosine transform of gx) where

-x:1 < x < 2(06 Marks)

17MAT31

c. Solve $\text{Li}_{\text{n}0} + 6\text{u}, \text{i-h}1 + 9\text{u}$, = with $\text{u}_0 = \text{ul- }0$ using z-transform.

(06 Marks)

Module-3

5 a. Fit a straight line y = ax + b for the <u>following</u> data by the method of least squares.

						14	
У	2	4	4	5	8	9	

(08 Marks)

b. Calculate the coefficient of correlation for the data:

	92									
y:	86	83	91	77	68	85	54	82	37	57

(06 Marks)

c. Compute the real root of xlogi _ox - 1.2 - 0 by the method of false position. Carry out 3 iterations in (2, 3y (06 Marks)

OR

6 a. Fit a second degree parabola to the following data $y = a + bx + cx^2$

x:	1	1.5	2	2.5	3	3.5	
y:	1.1	1.3	1.6	2	2.7	3 A	4.1

(08 Marks)

b. If 0 is the angle between two regression lines, show that

$$\tan 0 = \frac{|-\mathbf{r}|}{r} = \frac{\text{cf,a,}}{\text{4- Cr}}$$
; explain significance of $\mathbf{r} = 0$ and $\mathbf{r} \pm 1$. (06 Marks)

c. Using Newton Raphson method, find the real root of the equation $3x = \cos x + 1$ near $x_0 = 0.5$. Carry out 3 iterations. (06 Marks)

Module-4

7 a. From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks:	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
No. of students	31	42	51	35	31

(08 Marks)

b. Use Newton's dividend formula to <u>find f(9)</u> for the data:

x :	5	7	11	13	17
f(x):	150	392	1452	2366	5202

(06 Marks)

c. Find the approximate value of $\frac{r^2}{V\cos 0 \, dO}$ by Simpson's $\frac{1}{3}$ rule by dividing $\frac{r}{3}$ into 6 equal parts.

OK 1

8 a. The area A of a circle of diameter d is given for the following values:

	80	85	90	95	100
a	5026	5674	6362	7088	7854

Calculate the area of circle of diameter 105 by Newton's backward formula.

(08 Marks)

b. Using Lagrange's interpolation formula to find the polynomial which passes through the points (0, -12), (1, 0), (3, 6), (4, 12). (06 Marks)

C. Evaluate f log_e x dx taking 6 equal parts by applying Weddle's rule.

(06 Marks)

• F'''Ci4iNtIni

17MAT31

Module-5

9 a. If $F = 3xyi - y^{-}j$, evaluate f F.dr where 'C' is arc of parabola $y = 2x^{-2}$ from (0, 0) to (1, 2)

(08 Marks)

b. Evaluate by Stokes theorem

 $(\sin z dx - \cos x dy + \sin y dz)$, where C is the boundary of the rectangle 0 < x < 0

$$0 \text{ y } 1, z=3$$
 (06 Marks)

C. Prove that the necessary condition thr the I = if(x,y,y')dx to be extremum is

$$\begin{array}{ccc}
af & d & \underline{} \\
ay & dx & ay
\end{array} = \mathbf{0} \\
\underline{} (06 \text{ Marks})$$

OR

- 10 a. Using Green's theorem evaluate $f(3x^2 8y')1x + (4.y 6xy)dy$, where C is the boundary of the region bounded by the lines x = 0, y = 0, x + y = 1. (08 Marks)
 - b. Find the external value of $||(y')|^2 4y\cos x dx$. Given that y(0) = 0, y = 0.

(06 Marks)

c. Prove that the shortest distance between two points in a plane is along a straight line joining them.

(06 Marks)