

15ME61

Semester B.E. Degree Examination, June/July 2019 **Finite Element Analysis**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-I

1 a_ Explain the steps involved in FEM.

(08 Marks)

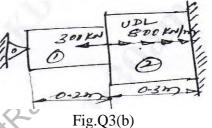
b. Discuss the convergence and competability requirements of elements.

(08 Marks)

OR

2 a. Explain the importance of Node numbering scheme.

(06 Marks)


b. What are simple, complex and multiplex elements? (10 Marks)

Module-2

3 a. Derive the shape function for quadratic I D bar clement.

(06 Marks)

b. Find the nodal displacement stress and reaction for the bar subjected to load as shown in Fig.Q3(b)_ Take $E_1 = 70$ GPa and E2 = 200 GPa. (10 Marks)

OR

Explain isoparametric, sub-parametric and superparametric elements. (06 Marks)

For the two-bar truss shown in Fig.Q4(h), determine the displacements, stress in each elements and reactions at the support. (10 **Marks**)

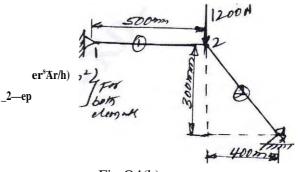
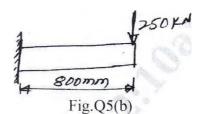


Fig.Q4(b)

Module-3


a. Derive the Hermite function for beam element.

(08 Marks)

b. A cantilever beam subjected to a point load of 250 kN as shown in Fig.Q5(b). Determine the deflection at the free end and the support reactions. Take E = 200 GPa, $I = -4x + 10^6 \text{ mm}^4$

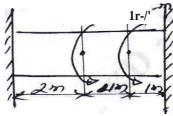
15Mi.

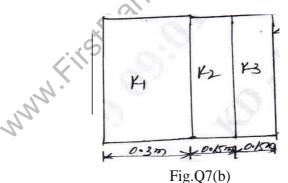
OR

a. Explain the finite element formation of shaft.

(06 Marks)

b. A bar of circular cross section having a diameter of 50 mm is firmly fixed at its ends and subjected to a torque as shown in Fig.Q6(b). Determine maximum angle of twist and shear stress. Take $G = 7x10^4 \text{ Nimm}^2$ and $E = 2x10^5 \text{ ly/mm}^2$. (10 Marks)




Fig.Q6(b)

Module-4

7 a. Explain the differential equation for an 1 D-heat conduction.

(04 Marks)

b. A composite slab consists of three materials with thermal conductivities of 20 W/m °C, 30 W/m °C, 50 W/m °C and thickness 0.3m, 0.15m and 0.15m respectively as shown in Fig.Q7(b). The outer surface is at 20°C and the inner surface is exposed to the convective heat transfer coefficient of 25 W/m ' °C and a medium at 800°C. Determine the temperature distribution within the wall. (12 Marks)

OR

8 a. Derive the stiffness matrix for 1-D element with two-nodes having nodal fluid heads.

(06 Marks)

b. For the smooth pipe with uniform cross-section of 1 m² as shown in Fig.Q8(b). Determine the flow velocities at the center and right end, by knowing the velocity at the left is V, = 2m/sec.

Marks)

13 ⁸Z

15ME61

Module-5

- a. Derive the stiffness matrix of axisymmetric bodies with triangular element. (12 Marks)
 - b. For the element of an axisymmetric body rotating with a constant angular velocity w = 1000rev/min as shown in Fig.Q9(b). Determine the body force vector. Include the weight of the material, $p = 7850 \text{ kg/m}^3$. (04 Marks)

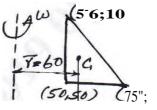


Fig.Q9(b)

OR

- 10 a. Differentiate between lumped mass matrix and consistent mass matrix_ (06 Marks)
 - b. Device consistent mass matrix for truss element. (10 Marks)

Soviet

Soviet