## II B.Tech I Semester Examinations,MAY 2011 <br> MECHANICS OF FLUIDS <br> Aeronautical Engineering

Time: 3 hours
Max Marks: 80

## Answer any FIVE Questions

All Questions carry equal marks

1. (a) Differentiate between the Eulerian and lagrargian methods of representing fluid flow.
(b) The flow field of a fluid is given by $V=x y i+2 y z j-\left(y z+z^{2}\right) k$,
i. Show that it represents a possible three dimensional steady incompressible continuous flow.
ii. Is this flow rotational or irrotational?
2. (a) A supersonic plane at a height H from the ground is flying. The observer on the ground hears the sonic boom $\mathbf{t}$ seconds after passing the plane over his head. Prove that, the Mach number of the flying plane is given by $\frac{1}{M}=\sqrt{1-\left(\frac{C t}{H}\right)^{2}}$
where C is the sound speed.
(b) Find the sonic velocity for the following fluids:
i. Crude oil, $\rho=800 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{K}=1530 \mathrm{MN} / \mathrm{m}^{2}$,
ii. Nercury, $\mathrm{p}=13600 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{K}=27000 \mathrm{MN} / \mathrm{m}^{2}$.
3. A horizontal circular tube of radius ' $a$ ' has a fixed coaxial cylindrical core of radius b. $\tau_{a}$ and $\tau_{b}$ are the shear stresses along the tube and core surfaces when a viscous liquid is flowing through the annulus. The flow is laminar and the rate of variation of pressure along the length of the passage is $\left(-\frac{\partial p}{\partial l}\right)$ Show that:
$a \tau_{a}-b . \tau_{b}=\frac{1}{2}\left(a^{2}-b^{2}\right)\left(\frac{\partial p}{\partial l}\right)$.
4. A vertical venturimeter $40 \mathrm{~cm} \times 20 \mathrm{~cm}$ is provided in a vertical pipe to measure flow of oil of relative density 0.8 . The difference in elevation of throat section and the entrance section is 1 m , the direction of flow being vertically upwards. The oil mercury differential gauge shows deflection of mercury equal to 40 cm . Neglecting the losses, determine the quantity of oil flowing through the pipe.
5. (a) Two vertical parallel glass plates distance t apart are partially submerged in a liquid of specific weight g and surface tension s . Show that the capillary rise is given by
$h=\frac{2 \sigma \operatorname{Cos} \theta}{t \gamma}$
(b) Derive the expression for the total pressure and centre of pressure for a submerged inclined plane surface.
$[8+8]$
6. (a) What is a boundary layer? Why does it increase with distance from the up stream edge?
(b) For the velocity profile in laminar boundary layer given as $\frac{u}{U}=\frac{3}{2}(y / \delta)-$ $\frac{1}{2}(y / \delta)^{3}$, find the thickness of the boundary layer and shear stress 1.8 m from the leading edge of a plate. The plate is 2.5 m long and 1.5 m wide and is placed in water which is moving with a velocity of 15 cm per second. Find the drag on one side of the plate if the viscosity of water $=0.01$ poise. $\quad[4+12]$
7. (a) When pipes are connected in series what is the loss of head in the system?
(b) A sudden expansion from a diameter of 250 mm to a diameter of 500 mm is provided in a pipe line. The power lost due to the sudden enlargement is found to be 5 kW . Find the rate of flow in the pipe and the difference of pressure between sections before and after the sudden enlargement. $[6+10]$
8. (a) State and prove the impluse momentum equation, giving the expression for force exerted by the fluid on a bend in a pipe.
(b) Water is flowing at the rate of $40 \mathrm{lit} / \mathrm{s}$ through a tapering pipe the diameters at the bottom and upper ends are 300 mm and 200 mm respectively. If the intensities of pressure at the bottom and upper ends are $250 \mathrm{kN} / \mathrm{m}^{2}$ and 100 $\mathrm{kN} / \mathrm{m}^{2}$ respectively. Find the difference in datum head.
[8+8]

# II B.Tech I Semester Examinations,MAY 2011 <br> MECHANICS OF FLUIDS <br> Aeronautical Engineering 

Time: 3 hours
Max Marks: 80

## Answer any FIVE Questions <br> All Questions carry equal marks

1. (a) State and prove the impluse momentum equation, giving the expression for force exerted by the fluid on a bend in a pipe.
(b) Water is flowing at the rate of $40 \mathrm{lit} / \mathrm{s}$ through a tapering pipe the diameters at the bottom and upper ends are 300 mm and 200 mm respectively. If the intensities of pressure at the bottom and upper ends are $250 \mathrm{kN} / \mathrm{m}^{2}$ and 100 $\mathrm{kN} / \mathrm{m}^{2}$ respectively. Find the difference in datum head. [8+8]
2. (a) When pipes are connected in series what is the loss of head in the system?
(b) A sudden expansion from a diameter of 250 mm to a diameter of 500 mm is provided in a pipe line. The power lost due to the sudden enlargement is found to be 5 kW . Find the rate of flow in the pipe and the difference of pressure between sections before and after the sudden enlargement. [6+10]
3. (a) Differentiate between the Eulerian and lagrargian methods of representing fluid flow.
(b) The flow field of a fluid is given by $V=x y i+2 y z j-\left(y z+z^{2}\right) k$.
i. Show that it represents a possible three dimensional steady incompressible continuous flow.
ii. Is this flow rotational or irrotational?
4. (a) A supersonic plane at a height H from the ground is flying. The observer on the ground hears the sonic boom $t$ seconds after passing the plane over his head. Prove that, the Mach number of the flying plane is given by $\frac{1}{M}=\sqrt{1-\left(\frac{C t}{H}\right)^{2}}$
where C is the sound speed.
(b) Find the sonic velocity for the following fluids:
i. Crude oil, $\rho=800 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{K}=1530 \mathrm{MN} / \mathrm{m}^{2}$,
ii. Mercury, $\mathrm{p}=13600 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{K}=27000 \mathrm{MN} / \mathrm{m}^{2}$.

$$
[10+6]
$$

5. (a) Two vertical parallel glass plates distance $t$ apart are partially submerged in a liquid of specific weight g and surface tension s . Show that the capillary rise is given by
$h=\frac{2 \sigma \operatorname{Cos} \theta}{t \gamma}$
(b) Derive the expression for the total pressure and centre of pressure for a submerged inclined plane surface.
6. A horizontal circular tube of radius 'a' has a fixed coaxial cylindrical core of radius b. $\tau_{a}$ and $\tau_{b}$ are the shear stresses along the tube and core surfaces when a viscous liquid is flowing through the annulus. The flow is laminar and the rate of variation of pressure along the length of the passage is $\left(-\frac{\partial p}{\partial l}\right)$ Show that: $a \tau_{a}-b . \tau_{b}=\frac{1}{2}\left(a^{2}-b^{2}\right)\left(\frac{\partial p}{\partial l}\right)$.
7. (a) What is a boundary layer? Why does it increase with distance from the up stream edge?
(b) For the velocity profile in laminar boundary layer given as $\frac{u}{U}=\frac{3}{2}(y / \delta)-$ $\frac{1}{2}(y / \delta)^{3}$, find the thickness of the boundary layer and shear stress 1.8 m from the leading edge of a plate. The plate is 2.5 m long and 1.5 m wide and is placed in water which is moving with a velocity of 15 cm per second. Find the drag on one side of the plate if the viscosity of water $=0.01$ poise. $\quad[4+12]$
8. A vertical venturimeter $40 \mathrm{~cm} \times 20 \mathrm{~cm}$ is provided in a vertical pipe to measure flow of oil of relative density 0.8 . The difference in elevation of throat section and the entrance section is 1 m , the direction of flow being vertically upwards. The oil mercury differential gauge shows deflection of mercury equal to 40 cm . Neglecting the losses, determine the quantity of oil flowing through the pipe.

# II B.Tech I Semester Examinations,MAY 2011 <br> MECHANICS OF FLUIDS <br> Aeronautical Engineering 

Time: 3 hours
Max Marks: 80

## Answer any FIVE Questions

All Questions carry equal marks

1. (a) State and prove the impluse momentum equation, giving the expression for force exerted by the fluid on a bend in a pipe.
(b) Water is flowing at the rate of $40 \mathrm{lit} / \mathrm{s}$ through a tapering pipe the diameters at the bottom and upper ends are 300 mm and 200 mm respectively. If the intensities of pressure at the bottom and upper ends are $250 \mathrm{kN} / \mathrm{m}^{2}$ and 100 $\mathrm{kN} / \mathrm{m}^{2}$ respectively. Find the difference in datum head. [8+8]
2. (a) When pipes are connected in series what is the loss of head in the system?
(b) A sudden expansion from a diameter of 250 mm to a diameter of 500 mm is provided in a pipe line. The power lost due to the sudden enlargement is found to be 5 kW . Find the rate of flow in the pipe and the difference of pressure between sections before and after the sudden enlargement. $\quad[6+10]$
3. (a) What is a boundary layer? Why does it increase with distance from the up stream edge?
(b) For the velocity profile in laminar boundary layer given as $\frac{u}{U}=\frac{3}{2}(y / \delta)-$ $\frac{1}{2}(y / \delta)^{3}$, find the thickness of the boundary layer and shear stress 1.8 m from the leading edge of a plate. The plate is 2.5 m long and 1.5 m wide and is placed in water which is moving with a velocity of 15 cm per second. Find the drag on one side of the plate if the viscosity of water $=0.01$ poise. $\quad[4+12]$
4. A horizontal circular tube of radius 'a' has a fixed coaxial cylindrical core of radius b. $\tau_{a}$ and $\tau_{b}$ are the shear stresses along the tube and core surfaces when a viscous liquid is flowing through the annulus. The flow is laminar and the rate of variation of pressure along the length of the passage is $\left(-\frac{\partial p}{\partial l}\right)$ Show that:
$a \tau_{a}-b . \tau_{b}=\frac{1}{2}\left(a^{2}-b^{2}\right)\left(\frac{\partial p}{\partial l}\right)$.
5. (a) Differentiate between the Eulerian and lagrargian methods of representing fluid flow.
(b) The flow field of a fluid is given by $V=x y i+2 y z j-\left(y z+z^{2}\right) k$.
i. Show that it represents a possible three dimensional steady incompressible continuous flow.
ii. Is this flow rotational or irrotational?
6. (a) Two vertical parallel glass plates distance t apart are partially submerged in a liquid of specific weight g and surface tension s . Show that the capillary rise

## Set No. 1

is given by
$h=\frac{2 \sigma \operatorname{Cos} \theta}{t \gamma}$
(b) Derive the expression for the total pressure and centre of pressure for a submerged inclined plane surface.
7. A vertical venturimeter $40 \mathrm{~cm} \times 20 \mathrm{~cm}$ is provided in a vertical pipe to measure flow of oil of relative density 0.8 . The difference in elevation of throat section and the entrance section is 1 m , the direction of flow being vertically upwards. The oil mercury differential gauge shows deflection of mercury equal to 40 cm . Neglecting the losses, determine the quantity of oil flowing through the pipe.
8. (a) A supersonic plane at a height H from the ground is flying. The observer on the ground hears the sonic boom $t$ seconds after passing the plane over his head. Prove that, the Mach number of the flying planefis given by
$\frac{1}{M}=\sqrt{1-\left(\frac{C t}{H}\right)^{2}}$
where C is the sound speed.
(b) Find the sonic velocity for the following fluids:
i. Crude oil, $\rho=800 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{K}=1530 \mathrm{MN} / \mathrm{m}^{2}$,
ii. Mercury, $\mathrm{p}=13600 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{K}=27000 \mathrm{MN} / \mathrm{m}^{2}$.
[10+6]

# II B.Tech I Semester Examinations,MAY 2011 <br> MECHANICS OF FLUIDS <br> Aeronautical Engineering 

Time: 3 hours
Max Marks: 80

## Answer any FIVE Questions

All Questions carry equal marks

1. (a) Two vertical parallel glass plates distance $t$ apart are partially submerged in a liquid of specific weight $g$ and surface tension $s$. Show that the capillary rise is given by
$h=\frac{2 \sigma \operatorname{Cos} \theta}{t \gamma}$
(b) Derive the expression for the total pressure and centre of pressure for a submerged inclined plane surface.
2. (a) A supersonic plane at a height H from the ground is flying. The observer on the ground hears the sonic boom $t$ seconds after passing the plane over his head. Prove that, the Mach number of the flying plane is given by $\frac{1}{M}=\sqrt{1-\left(\frac{C t}{H}\right)^{2}}$
where C is the sound speed.
(b) Find the sonic velocity for the following fluids:
i. Crude oil, $\rho=800 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{K}=1530 \mathrm{MN} / \mathrm{m}^{2}$,
ii. Mercury, $\mathrm{p}=13600 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{K}=27000 \mathrm{MN} / \mathrm{m}^{2}$. $[10+6]$
3. (a) State and prove the impluse momentum equation, giving the expression for force exerted by the fluid on a bend in a pipe.
(b) Water is flowing at the rate of $40 \mathrm{lit} / \mathrm{s}$ through a tapering pipe the diameters at the bottom and upper ends are 300 mm and 200 mm respectively. If the intensities of pressure at the bottom and upper ends are $250 \mathrm{kN} / \mathrm{m}^{2}$ and 100 $\mathrm{kN} / \mathrm{m}^{2}$ respectively. Find the difference in datum head.
[8+8]
4. A vertical venturimeter $40 \mathrm{~cm} \times 20 \mathrm{~cm}$ is provided in a vertical pipe to measure flow of oil of relative density 0.8 . The difference in elevation of throat section and the entrance section is 1 m , the direction of flow being vertically upwards. The oil mercury differential gauge shows deflection of mercury equal to 40 cm . Neglecting the losses, determine the quantity of oil flowing through the pipe.
5. A horizontal circular tube of radius ' $a$ ' has a fixed coaxial cylindrical core of radius b. $\tau_{a}$ and $\tau_{b}$ are the shear stresses along the tube and core surfaces when a viscous liquid is flowing through the annulus. The flow is laminar and the rate of variation of pressure along the length of the passage is $\left(-\frac{\partial p}{\partial l}\right)$ Show that:
$a \tau_{a}-b . \tau_{b}=\frac{1}{2}\left(a^{2}-b^{2}\right)\left(\frac{\partial p}{\partial l}\right)$.
6. (a) Differentiate between the Eulerian and lagrargian methods of representing fluid flow.
(b) The flow field of a fluid is given by $V=x y i+2 y z j-\left(y z+z^{2}\right) k$.
i. Show that it represents a possible three dimensional steady incompressible continuous flow.
ii. Is this flow rotational or irrotational?
7. (a) What is a boundary layer? Why does it increase with distance from the up stream edge?
(b) For the velocity profile in laminar boundary layer given as $\frac{u}{U}=\frac{3}{2}(y / \delta)-$ $\frac{1}{2}(y / \delta)^{3}$, find the thickness of the boundary layer and shear stress 1.8 m from the leading edge of a plate. The plate is 2.5 m long and 1.5 m wide and is placed in water which is moving with a velocity of 15 cm per second. Find the drag on one side of the plate if the viscosity of water $=0.01$ poise. $\quad[4+12]$
8. (a) When pipes are connected in series what is the loss of head in the system?
(b) A sudden expansion from a diameter of 250 mm to a diameter of 500 mm is provided in a pipe line. The power lost due to the sudden enlargement is found to be 5 kW . Find the rate of flow in the pipe and the difference of pressure between sections before and after the sudden enlargement.
