II B.Tech I Semester Examinations,MAY 2011
 MOMENTUM TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Calculate the different settling velocities for spherical quartz particles of following diameter $100,400,600,900 \mathrm{~mm}$ settling in water at $20{ }^{\circ} \mathrm{C}$. Density of quartz $=$ $2650 \mathrm{Kg} / \mathrm{m}^{3}$, Density of water $=1000 \mathrm{Kg} / \mathrm{m}^{3}$ Viscosity of water $=1 \mathrm{cp}$. .
Show graphically how the settling velocity changes with the variation of particles diameter.
2. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.

$$
[5+5+6]
$$

3. (a) State the Bernoullis equation? Explain the significance of each term.
(b) Write any two applications of the Bernoullis equation.
(c) Write short notes on Average velocity.

$$
[8+4+4]
$$

4. (a) Derive the condition for hydrostatic equilibrium and deduce the barometric equation.
(b) What are the required characteristics of the manometric fluid.
5. (a) Define the terms Mach number and sonic velocity.
(b) Explain about convergent -divergent nozzle.
6. (a) How can it be said that a suspension, when fluidized, behaves like a dense fluid?
(b) Write on entrainment.
7. Brine is to be pumped through 35 meters of smooth copper tube of 2.5 cm ID. For a flow rate of 95 LPM, calculate:
(a) The pressure drop due to friction and
(b) Power required to overcome friction. Density and viscosity of brine $1.18 \mathrm{~g} / \mathrm{cc}$ and 2.5 cP , respectively. Friction factor may be estimated from $0.0014+$ $0.125 / \operatorname{Re}^{0.32}$.
8. (a) Obtain an expression to estimate venturi coefficient.
(b) A horizontal venturi meter having a throat diameter of 20 mm is placed in a $75-\mathrm{mm}$ ID pipeline, through which water is flowing at $15{ }^{\circ} \mathrm{C}$. A mercury manometer gives a reading of 500 mm . Determine the water flow rate. [16]

II B.Tech I Semester Examinations,MAY 2011
 MOMENTUM TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular piper
2. Brine is to be pumped through 35 meters of smooth copper tube of 2.5 cm ID. For a flow rate of 95 LPM, calculate:
(a) The pressure drop due to friction and
(b) Power required to overcome friction. Density and viscosity of brine $1.18 \mathrm{~g} / \mathrm{cc}$ and 2.5 cP , respectively. Friction factor may be estimated from $0.0014+$ $0.125 / \operatorname{Re}^{0.32}$.
3. (a) Define the terms Mach number and sonic velocity.
(b) Explain about convergent -divergent nozzle.
4. (a) Obtain an expression to estimate venturi coefficient.
(b) A horizontal venturi meter having a throat diameter of 20 mm is placed in a $75-\mathrm{mm}$ ID pipeline, through which water is flowing at $15^{\circ} \mathrm{C}$. A mercury manometer gives a reading of 500 mm . Determine the water flow rate. [16]
5. (a) State the Bernoullis equation? Explain the significance of each term.
(b) Write any two applications of the Bernoullis equation.
(c) Write short notes on Average velocity.

$$
[8+4+4]
$$

6. (a) How can it be said that a suspension, when fluidized, behaves like a dense fluid?
(b) Write on entrainment.
7. (a) Derive the condition for hydrostatic equilibrium and deduce the barometric equation.
(b) What are the required characteristics of the manometric fluid.
$[12+4]$
8. Calculate the different settling velocities for spherical quartz particles of following diameter $100,400,600,900 \mathrm{~mm}$ settling in water at $20^{\circ} \mathrm{C}$. Density of quartz $=$ $2650 \mathrm{Kg} / \mathrm{m}^{3}$, Density of water $=1000 \mathrm{Kg} / \mathrm{m}^{3}$ Viscosity of water $=1 \mathrm{cp}$.
Show graphically how the settling velocity changes with the variation of particles diameter.

II B.Tech I Semester Examinations,MAY 2011
 MOMENTUM TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Obtain an expression to estimate venturi coefficient.
(b) A horizontal venturi meter having a throat diameter of 20 mm is placed in a $75-\mathrm{mm}$ ID pipeline, through which water is flowing at $15{ }^{0} \mathrm{C}$. A mercury manometer gives a reading of 500 mm . Determine the water flow rate. [16]
2. (a) How can it be said that a suspension, when fluidized, behaves like a dense fluid?
(b) Write on entrainment.
3. (a) State the Bernoullis equation? Explain the significance of each term.
(b) Write any two applications of the Bernoullis equation.
(c) Write short notes on Average velocity

$$
[8+4+4]
$$

4. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydratuie mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.
5. (a) Derive the condition for hydrostatic equilibrium and deduce the barometric equation.
(b) What are the required characteristics of the manometric fluid.
6. (a) Define the terms Mach number and sonic velocity.
(b) Explain about convergent -divergent nozzle.
7. Calculate the different settling velocities for spherical quartz particles of following diameter $100,400,600,900 \mathrm{~mm}$ settling in water at $20^{\circ} \mathrm{C}$. Density of quartz $=$ $2650 \mathrm{Kg} / \mathrm{m}^{3}$, Density of water $=1000 \mathrm{Kg} / \mathrm{m}^{3}$ Viscosity of water $=1 \mathrm{cp}$.
Show graphically how the settling velocity changes with the variation of particles diameter.
8. Brine is to be pumped through 35 meters of smooth copper tube of 2.5 cm ID. For a flow rate of 95 LPM, calculate:
(a) The pressure drop due to friction and
(b) Power required to overcome friction. Density and viscosity of brine $1.18 \mathrm{~g} / \mathrm{cc}$ and 2.5 cP , respectively. Friction factor may be estimated from $0.0014+$ $0.125 / \operatorname{Re}^{0.32}$.

II B.Tech I Semester Examinations,MAY 2011
 MOMENTUM TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Define the terms Mach number and sonic velocity.
(b) Explain about convergent -divergent nozzle.
2. Calculate the different settling velocities for spherical quartz partieles of following diameter $100,400,600,900 \mathrm{~mm}$ settling in water at $20^{\circ} \mathrm{C}$. Density of quartz $=$ $2650 \mathrm{Kg} / \mathrm{m}^{3}$, Density of water $=1000 \mathrm{Kg} / \mathrm{m}^{3}$ Viscosity of water $=1 \mathrm{cp}$.
Show graphically how the settling velocity changes with the variation of particles diameter.
3. Brine is to be pumped through 35 meters of smooth copper tube of 2.5 cm ID. For a flow rate of 95 LPM, calculate:
(a) The pressure drop due to friction and
(b) Power required to overcome friction. Density and viscosity of brine $1.18 \mathrm{~g} / \mathrm{cc}$ and 2.5 cP , respectively. Friction factor may be estimated from $0.0014+$ $0.125 / \operatorname{Re}^{0.32}$
4. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.
5. (a) Obtain an expression to estimate venturi coefficient.
(b) A horizontal venturi meter having a throat diameter of 20 mm is placed in a $75-\mathrm{mm}$ ID pipeline, through which water is flowing at $15{ }^{\circ} \mathrm{C}$. A mercury manometer gives a reading of 500 mm . Determine the water flow rate. [16]
6. (a) Derive the condition for hydrostatic equilibrium and deduce the barometric equation.
(b) What are the required characteristics of the manometric fluid.
$[12+4]$
7. (a) How can it be said that a suspension, when fluidized, behaves like a dense fluid?
(b) Write on entrainment.
8. (a) State the Bernoullis equation? Explain the significance of each term.
(b) Write any two applications of the Bernoullis equation.
(c) Write short notes on Average velocity.
$[8+4+4]$

