II B.Tech I Semester Examinations,MAY 2011 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) What is solution pressure? Explain.
(b) A solution of sodium nitrate in water contains 1 kg of NaNO_{3} per 10 kg of water. Calculate the amount of ice formed in cooling 1000 kg of this solution to a temperature of $-15^{\circ} \mathrm{C}$. Concentration of saturated solution at $-15^{\circ} \mathrm{C}$ is given by 6.2 kmol of NaNO_{3} per 1000 kg of water. [4+12]
2. A large chamber contains dry N_{2} at $27^{\circ} \mathrm{C}$ and 101.3 kPa , water is injected in to the chamber. After saturation of the N_{2} with water vapor, the temperature in the chamber is $27^{0} \mathrm{C}$:
(a) What is the pressure inside the chamber after saturation?
(b) How many moles of $\mathrm{H}_{2} \mathrm{O}$ per mole of N_{2} are present in the saturated mixture? [8+8]
3. Ammonia is made by the reaction between hydrogen and N_{2} according to the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
If the reaction is carried out at 50 bar and 600 K , What volumes of nitrogen and H_{2} at these conditions are theoretically required for producing 1000 kg of ammonia and what will be the volume of NH_{3} produced at the reactor conditions. [16]
4. Dry air at 295 K and 100 kPa is bubbled through benzene. If the saturated air leaves at 300 K and 100 kPa ; how many kilograms of benzene are evaporated per $100 \mathrm{~m}^{3}$ of entering air. The vapour pressure of benzene (kPa.) is given by:
$1 \mathrm{nP}^{*}=13.885-\frac{2788.51}{\mathrm{~T}-52.36}$
5. Calculate the amount of heat needed to raise the temperature of 1 mol of a gaseous mixture containing $79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$ by volume from 200 to $1200^{\circ} \mathrm{C}$.
C_{p} for $\mathrm{N}_{2}=6.457+1.389 \times 10^{-3} \mathrm{~T}-0.069 \times 10^{-6} \mathrm{~T}^{2}$
C_{p} for $\mathrm{O}_{2}=6.117+3.167 \times 10^{-3} \mathrm{~T}-1.005 \times 10^{-6} \mathrm{~T}^{2}$
Here C_{p} is in $\mathrm{Cal} /(\mathrm{mol} . \mathrm{K})$ and T is in K .
6. (a) A solution has a gravity of 100^{0} Twaddell. Calculate its specific gravity and its gravity in degrees Baume.
(b) An oil has a specific gravity at $60^{0} / 60^{\circ} \mathrm{F}$ of 0.790 . Calculate its gravity in degrees API and degrees Baume.
7. Molten sulfur at $140^{\circ} \mathrm{C}$ is burnt with 30% excess air at $120^{\circ} \mathrm{C}$ in a sulfur burner producing sulfur dioxide. Calculate the adiabatic reaction temperature using the following data:
Standard heat of reaction $=-70.96 \mathrm{kcal} / \mathrm{mol}$
Mean heat capacities in cal/mol.K :
$\mathrm{S}(\mathrm{l})=7.4$
$\mathrm{SO}_{2}(\mathrm{~g})=12.15$
$\mathrm{O}_{2}(\mathrm{~g})=7.14$
$\mathrm{N}_{2}(\mathrm{~g})=7.51$
Air $=7.00$
8. (a) To prepare a solution of 50% sulfuric acid, a dilute waste acid containing 25% $\mathrm{H}_{2} \mathrm{SO}_{4}$ is combined with a concentrated acid containing $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. How many kg of the concentrated acid must be purchased for each 100 kg of dilute waste acid?
(b) A mixed acid containing $65 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 20 \% \mathrm{HNO}_{3}$ and $15 \% \mathrm{H}_{2} \mathrm{O}$ is to be made by blending the following:
i. A spent acid containing $10 \% \mathrm{HNO}_{3}, 60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $30 \% \mathrm{H}_{2} \mathrm{O}$.
ii. A concentrated nitric acid containing $92 \% \mathrm{HNO}_{3}$ and $8 \% \mathrm{H}_{2} \mathrm{O}$.
iii. A concentrated sulfuric acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $5 \% \mathrm{H}_{2} \mathrm{O}$.

All percentages are on weight basis. How many kg of each acid must be used to obtain 1700 kg of the mixed acid?
[8+8]

II B.Tech I Semester Examinations,MAY 2011 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) To prepare a solution of 50% sulfuric acid, a dilute waste acid containing 25% $\mathrm{H}_{2} \mathrm{SO}_{4}$ is combined with a concentrated acid containing $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. How many kg of the concentrated acid must be purchased for each 100 kg of dilute waste acid?
(b) A mixed acid containing $65 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 20 \% \mathrm{HNO}_{3}$ and $15 \% \mathrm{H}_{2} \mathrm{O}$ is to be made by blending the following:
i. A spent acid containing $10 \% \mathrm{HNO}_{3}, 60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $30 \% \mathrm{H}_{2} \mathrm{O}$.
ii. A concentrated nitric acid containing $92 \% \mathrm{HNO}_{3}$ and $8 \% \mathrm{H}_{2} \mathrm{O}$.
iii. A concentrated sulfuric acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $5 \% \mathrm{H}_{2} \mathrm{O}$.

All percentages are on weight basis. How many kg of each acid must be used to obtain 1700 kg of the mixed acid?
2. Molten sulfur at $140^{\circ} \mathrm{C}$ is burnt with 30% excess air at $120^{\circ} \mathrm{C}$ in a sulfur burner producing sulfur dioxide. Calculate the adiabatic reaction temperature using the following data:
Standard heat of reaction $=-70.96 \mathrm{kcal} / \mathrm{mol}$
Mean heat capacities in cal/mol.K :
$S(1)=7.4$
$\mathrm{SO}_{2}(\mathrm{~g})=12.15$
$\mathrm{O}_{2}(\mathrm{~g})=7.14$
$\mathrm{N}_{2}(\mathrm{~g})=7.51$
Air $=7.00$
3. Dry air at 295 K and 100 kPa is bubbled through benzene. If the saturated air leaves at 300 K and 100 kPa ; how many kilograms of benzene are evaporated per $100 \mathrm{~m}^{3}$ of entering air. The vapour pressure of benzene (kPa.) is given by: [16]
$1 \mathrm{nP}^{*}=13.885-\frac{2788.51}{\mathrm{~T}-52.36}$
4. (a) A solution has a gravity of 100^{0} Twaddell. Calculate its specific gravity and its gravity in degrees Baume.
(b) An oil has a specific gravity at $60^{0} / 60^{\circ} \mathrm{F}$ of 0.790 . Calculate its gravity in degrees API and degrees Baume.
5. Calculate the amount of heat needed to raise the temperature of 1 mol of a gaseous mixture containing $79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$ by volume from 200 to $1200^{\circ} \mathrm{C}$.
C_{p} for $\mathrm{N}_{2}=6.457+1.389 \times 10^{-3} \mathrm{~T}-0.069 \times 10^{-6} \mathrm{~T}^{2}$
C_{p} for $\mathrm{O}_{2}=6.117+3.167 \times 10^{-3} \mathrm{~T}-1.005 \times 10^{-6} \mathrm{~T}^{2}$
Here C_{p} is in $\mathrm{Cal} /(\mathrm{mol} . \mathrm{K})$ and T is in K .
6. (a) What is solution pressure? Explain.
(b) A solution of sodium nitrate in water contains 1 kg of NaNO_{3} per 10 kg of water. Calculate the amount of ice formed in cooling 1000 kg of this solution to a temperature of $-15^{\circ} \mathrm{C}$. Concentration of saturated solution at $-15^{\circ} \mathrm{C}$ is given by 6.2 kmol of NaNO_{3} per 1000 kg of water.
7. A large chamber contains dry N_{2} at $27^{\circ} \mathrm{C}$ and 101.3 kPa . water is injected in to the chamber. After saturation of the N_{2} with water vapor, the temperature in the chamber is $27^{0} \mathrm{C}$:
(a) What is the pressure inside the chamber after saturation?
(b) How many moles of $\mathrm{H}_{2} \mathrm{O}$ per mole of N_{2} are present in the saturated mixture? $[8+8]$
8. Ammonia is made by the reaction between hydrogen and N_{2} according to the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
If the reaction is carried out at 50 bar and 600 K , What volumes of nitrogen and H_{2} at these conditions are theoretically required for producing 1000 kg of ammonia and what will be the volume of NH_{3} produced at the reactor conditions.

II B.Tech I Semester Examinations,MAY 2011 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A large chamber contains dry N_{2} at $27^{0} \mathrm{C}$ and 101.3 kPa . water is injected in to the chamber. After saturation of the N_{2} with water vapor, the temperature in the chamber is $27^{0} \mathrm{C}$:
(a) What is the pressure inside the chamber after saturation?
(b) How many moles of $\mathrm{H}_{2} \mathrm{O}$ per mole of N_{2} are present in the saturated mixture?
[8+8]
2. Ammonia is made by the reaction between hydrogen and N_{2} according to the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
If the reaction is carried out at 50 bar and 600 K , What volumes of nitrogen and H_{2} at these conditions are theoretically required for producing 1000 kg of ammonia and what will be the volume of NH_{3} produced at the reactor conditions. [16]
3. Molten sulfur at $140^{\circ} \mathrm{C}$ is burnt with 30% excess air at $120^{\circ} \mathrm{C}$ in a sulfur burner producing sulfur dioxide. Calculate the adiabatic reaction temperature using the following data:
Standard heat of reaction $=-70.96 \mathrm{kcal} / \mathrm{mol}$
Mean heat capacities in cal/mol.K :
$\mathrm{S}(\mathrm{l})=7.4$
$\mathrm{SO}_{2}(\mathrm{~g})=12.15$
$\mathrm{O}_{2}(\mathrm{~g})=7.14$
$\mathrm{N}_{2}(\mathrm{~g})=7.51$
Air $=7.00$
4. Calculate the amount of heat needed to raise the temperature of 1 mol of a gaseous mixture containing $79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$ by volume from 200 to $1200^{\circ} \mathrm{C}$.
C_{p} for $\mathrm{N}_{2}=6.457+1.389 \times 10^{-3} \mathrm{~T}-0.069 \times 10^{-6} \mathrm{~T}^{2}$
C_{p} for $\mathrm{O}_{2}=6.117+3.167 \times 10^{-3} \mathrm{~T}-1.005 \times 10^{-6} \mathrm{~T}^{2}$
Here C_{p} is in $\mathrm{Cal} /(\mathrm{mol} . \mathrm{K})$ and T is in K .
5. (a) To prepare a solution of 50% sulfuric acid, a dilute waste acid containing 25% $\mathrm{H}_{2} \mathrm{SO}_{4}$ is combined with a concentrated acid containing $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. How many kg of the concentrated acid must be purchased for each 100 kg of dilute waste acid?
(b) A mixed acid containing $65 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 20 \% \mathrm{HNO}_{3}$ and $15 \% \mathrm{H}_{2} \mathrm{O}$ is to be made by blending the following:
i. A spent acid containing $10 \% \mathrm{HNO}_{3}, 60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $30 \% \mathrm{H}_{2} \mathrm{O}$.
ii. A concentrated nitric acid containing $92 \% \mathrm{HNO}_{3}$ and $8 \% \mathrm{H}_{2} \mathrm{O}$.
iii. A concentrated sulfuric acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $5 \% \mathrm{H}_{2} \mathrm{O}$.

All percentages are on weight basis. How many kg of each acid must be used to obtain 1700 kg of the mixed acid?
6. (a) What is solution pressure? Explain.
(b) A solution of sodium nitrate in water contains 1 kg of NaNO_{3} per 10 kg of water. Calculate the amount of ice formed in cooling 1000 kg of this solution to a temperature of $-15^{\circ} \mathrm{C}$. Concentration of saturated solution at $-15^{\circ} \mathrm{C}$ is given by 6.2 kmol of NaNO_{3} per 1000 kg of water.
$[4+12]$
7. Dry air at 295 K and 100 kPa is bubbled through benzene. If the saturated air leaves at 300 K and 100 kPa ; how many kilograms of benzene are evaporated per $100 \mathrm{~m}^{3}$ of entering air. The vapour pressure of benzene (kPa.) is given by: [16]
$1 \mathrm{nP}^{*}=13.885-\frac{2788.51}{\mathrm{~T}-52.36}$
8. (a) A solution has a gravity of 100° Twaddell. Calculate its specific gravity and its gravity in degrees Baume.
(b) An oil has a specific gravity at $60^{0} / 60^{\circ} \mathrm{F}$ of 0.790 . Calculate its gravity in degrees API and degrees Baume.

II B.Tech I Semester Examinations,MAY 2011 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Ammonia is made by the reaction between hydrogen and N_{2} according to the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
If the reaction is carried out at 50 bar and 600 K , What volunes of nitrogen and H_{2} at these conditions are theoretically required for producing 1000 kg of ammonia and what will be the volume of NH_{3} produced at the reactor conditions.
2. (a) What is solution pressure? Explain.
(b) A solution of sodium nitrate in water contains 1 kg of NaNO_{3} per 10 kg of water. Calculate the amount of ice formed in cooling 1000 kg of this solution to a temperature of $-15^{\circ} \mathrm{C}$. Concentration of saturated solution at $-15^{\circ} \mathrm{C}$ is given by 6.2 kmol of NaNO_{3} per 1000 kg of water. $[4+12]$
3. Molten sulfur at $140^{\circ} \mathrm{C}$ is burnt with 30% excess air at $120^{\circ} \mathrm{C}$ in a sulfur burner producing sulfur dioxide. Calculate the adiabatic reaction temperature using the following data:
Standard heat of reaction $=-70.96 \mathrm{kcal} / \mathrm{mol}$
Mean heat capacities in cal/mol.K :
$S(1)=7$.
$\mathrm{SO}_{2}(\mathrm{~g})=12.15$
$\mathrm{O}_{2}(\mathrm{~g})=7.14$
$\mathrm{N}_{2}(\mathrm{~g})=7.51$
Air $=7.00$
4. Calculate the amount of heat needed to raise the temperature of 1 mol of a gaseous mixture containing $79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$ by volume from 200 to $1200^{\circ} \mathrm{C}$.
C_{p} for $\mathrm{N}_{2}=6.457+1.389 \times 10^{-3} \mathrm{~T}-0.069 \times 10^{-6} \mathrm{~T}^{2}$
C_{p} for $\mathrm{O}_{2}=6.117+3.167 \times 10^{-3} \mathrm{~T}-1.005 \times 10^{-6} \mathrm{~T}^{2}$
Here C_{p} is in $\mathrm{Cal} /(\mathrm{mol} . \mathrm{K})$ and T is in K .
5. (a) A solution has a gravity of 100° Twaddell. Calculate its specific gravity and its gravity in degrees Baume.
(b) An oil has a specific gravity at $60^{0} / 60^{\circ} \mathrm{F}$ of 0.790 . Calculate its gravity in degrees API and degrees Baume.
[8+8]
6. Dry air at 295 K and 100 kPa is bubbled through benzene. If the saturated air leaves at 300 K and 100 kPa ; how many kilograms of benzene are evaporated per $100 \mathrm{~m}^{3}$ of entering air. The vapour pressure of benzene (kPa.) is given by:
$1 \mathrm{nP}^{*}=13.885-\frac{2788.51}{\mathrm{~T}-52.36}$
7. (a) To prepare a solution of 50% sulfuric acid, a dilute waste acid containing 25% $\mathrm{H}_{2} \mathrm{SO}_{4}$ is combined with a concentrated acid containing $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. How many kg of the concentrated acid must be purchased for each 100 kg of dilute waste acid?
(b) A mixed acid containing $65 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 20 \% \mathrm{HNO}_{3}$ and $15 \% \mathrm{H}_{2} \mathrm{O}$ is to be made by blending the following:
i. A spent acid containing $10 \% \mathrm{HNO}_{3}, 60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $30 \% \mathrm{H}_{2} \mathrm{O}$.
ii. A concentrated nitric acid containing $92 \% \mathrm{HNO}_{3}$ and $8 \% \mathrm{H}_{2} \mathrm{O}$.
iii. A concentrated sulfuric acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $5 \% \mathrm{H}_{2} \mathrm{O}$.

All percentages are on weight basis. How many kg of each acid must be used to obtain 1700 kg of the mixed acid?
8. A large chamber contains dry N_{2} at $27^{\circ} \mathrm{C}$ and 101.3 kPa , water is injected in to the chamber. After saturation of the N_{2} with water vapor, the temperature in the chamber is $27^{0} \mathrm{C}$:
(a) What is the pressure inside the chamber after saturation?
(b) How many moles of $\mathrm{H}_{2} \mathrm{O}$ per mole of N_{2} are present in the saturated mixture?

