R07

Set No. 2

II B.Tech I Semester Examinations, May 2011 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Time: 3 hours

Code No: 07A32101

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. A shaft transmits 300 kW power at 120 r.p.m. The allowable shear stress is 70 N/mm^2 Determine:
 - (a) The necessary diameter of solid circular shaft
 - (b) The necessary diameter of hollow circular section, the inside diameter being 2/3 of the external diameter.
 - (c) Taking the density of material is 77 $\rm kN/m^3,$ calculate the % saving in the material if hollow shaft is used. [16]
- 2. A thin cylinder of internal diameter 2.0 m contains a fluid at an internal pressure of 3 N/mm^2 . Determine the minimum thickness required if:
 - (a) the longitudinal stress is not to exceed 30 N/mm^2 and
 - (b) Circumferential stress is not to exceed 40 N/mm^2 . [16]
- 3. A cantilever of T-section (Flange: $120 \text{mm} \times 20 \text{mm}$; Web: $130 \text{mm} \times 20 \text{mm}$) is 2.8 m long and the deflection at the free end is not to exceed 2mm, determine: The maximum value of W, Direction of neutral axis with respect to vertical axis. [16]
- 4. (a) A beam of symmetrical section has a depth of 450 mm and a moment of inertia of $27,536 \times 10^4 \text{ mm}^4$ about its axis of bending. Find the maximum permissible span for this beam if simply supported at the ends. It has to carry a uniformly distributed load of 25 kN/m without exceeding a bending stress of 120 N/mm².
 - (b) A cast iron beam 25 mm square in section and 600 mm long is freely supported at the ends. It fails with a central load of 2.5 kN. What load at the free end will break a cantilever for the same material 50 mm wide \times 100 mm deep and 1500 mm long. [16]
- 5. A cantilever of length 3m carries two point loads of 2 kN at the free end and 4 kN at a distance of 1 m from the free end. Find the slope and deflection at the free end. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 10^8 \text{ mm}^4$. [16]
- 6. A beam section shown in figure 6 is subjected to a shear force of 10kN. Plot a graph showing the variation of shear stress along the depth of section. Determine also the ratio of maximum shear stress and mean shear stress. [16]

Figure 6

- 7. (a) Derive an expression between shear force and bending moment with suitable assumptions.
 - (b) Draw the shear force & Bending moment diagrams for a cantilever subjected to the loads as shown in figure 7b. [8+8]

8. A welded joint is provided to connect two tie bars 150 mm \times 10mm as shown in figure 8. The working stress in the bar is 120 MN/m². Investigate the design. If the size of the fillet is 12mm. Take the working stress in the end fillet as 102.5 MN/m² and that in the diagonal fillet as 70 MN/m². [16]

Figure 8

Time: 3 hours

R07

Set No. 4

II B.Tech I Semester Examinations, May 2011 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Derive an expression between shear force and bending moment with suitable assumptions.
 - (b) Draw the shear force & Bending moment diagrams for a cantilever subjected to the loads as shown in figure 1b. [8+8]

- 2. A thin cylinder of internal diameter 2.0 m contains a fluid at an internal pressure of 3 N/mm². Determine the minimum thickness required if:
 - (a) the longitudinal stress is not to exceed 30 N/mm^2 and
 - (b) Circumferential stress is not to exceed 40 N/mm^2 . [16]
- 3. A cantilever of T-section (Flange: 120mm × 20mm; Web: 130 mm × 20mm) is 2.8 m long and the deflection at the free end is not to exceed 2mm, determine: The maximum value of W, Direction of neutral axis with respect to vertical axis. [16]
- 4. A cantilever of length 3m carries two point loads of 2 kN at the free end and 4 kN at a distance of 1 m from the free end. Find the slope and deflection at the free end. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 10^8 \text{ mm}^4$. [16]
- 5. (a) A beam of symmetrical section has a depth of 450 mm and a moment of inertia of $27,536 \times 10^4 \text{ mm}^4$ about its axis of bending. Find the maximum permissible span for this beam if simply supported at the ends. It has to carry a uniformly distributed load of 25 kN/m without exceeding a bending stress of 120 N/mm².
 - (b) A cast iron beam 25 mm square in section and 600 mm long is freely supported at the ends. It fails with a central load of 2.5 kN. What load at the free end will break a cantilever for the same material 50 mm wide × 100 mm deep and 1500 mm long. [16]

$\mathbf{R07}$

Set No. 4

6. A beam section shown in figure 6 is subjected to a shear force of 10kN. Plot a graph showing the variation of shear stress along the depth of section. Determine also the ratio of maximum shear stress and mean shear stress. [16]

Figure 6

- 7. A shaft transmits 300 kW power at 120 r.p.m. The allowable shear stress is 70 $\rm N/mm^2.$ Determine:
 - (a) The necessary diameter of solid circular shaft
 - (b) The necessary diameter of hollow circular section, the inside diameter being 2/3 of the external diameter.
 - (c) Taking the density of material is 77 kN/m³, calculate the % saving in the material if hollow shaft is used. [16]
- 8. A welded joint is provided to connect two tie bars 150 mm \times 10mm as shown in figure 8. The working stress in the bar is 120 MN/m². Investigate the design. If the size of the fillet is 12mm. Take the working stress in the end fillet as 102.5 MN/m² and that in the diagonal fillet as 70 MN/m². [16]

Figure 8

Time: 3 hours

R07

Set No. 1

II B.Tech I Semester Examinations, May 2011 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. A cantilever of length 3m carries two point loads of 2 kN at the free end and 4 kN at a distance of 1 m from the free end. Find the slope and deflection at the free end. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 10^8 \text{ mm}^4$. [16]
- 2. A welded joint is provided to connect two tie bars 150 mm \times 10mm as shown in figure 2. The working stress in the bar is 120 MN/m². Investigate the design. If the size of the fillet is 12mm. Take the working stress in the end fillet as 102.5 MN/m² and that in the diagonal fillet as 70 MN/m². [16]

Figure 2

- 3. (a) Derive an expression between shear force and bending moment with suitable assumptions.
 - (b) Draw the shear force & Bending moment diagrams for a cantilever subjected to the loads as shown in figure 3b. [8+8]

Figure 3b

4. A cantilever of T-section (Flange: $120 \text{mm} \times 20 \text{mm}$; Web: $130 \text{mm} \times 20 \text{mm}$) is 2.8

www.firstranker.com

Code No: 07A32101

R07

Set No. 1

[16]

m long and the deflection at the free end is not to exceed 2mm, determine: The maximum value of W, Direction of neutral axis with respect to vertical axis. [16]

- 5. A shaft transmits 300 kW power at 120 r.p.m. The allowable shear stress is 70 $\rm N/mm^2.$ Determine:
 - (a) The necessary diameter of solid circular shaft
 - (b) The necessary diameter of hollow circular section, the inside diameter being 2/3 of the external diameter.
 - (c) Taking the density of material is 77 kN/m³, calculate the % saving in the material if hollow shaft is used.
 [16]
- 6. A beam section shown in figure 6 is subjected to a shear force of 10kN. Plot a graph showing the variation of shear stress along the depth of section. Determine also the ratio of maximum shear stress and mean shear stress. [16]

- 7. A thin cylinder of internal diameter 2.0 m contains a fluid at an internal pressure of 3 N/mm^2 . Determine the minimum thickness required if:
 - (a) the longitudinal stress is not to exceed 30 N/mm^2 and
 - (b) Circumferential stress is not to exceed 40 N/mm^2 .
- 8. (a) A beam of symmetrical section has a depth of 450 mm and a moment of inertia of $27,536 \times 10^4 \text{ mm}^4$ about its axis of bending. Find the maximum permissible span for this beam if simply supported at the ends. It has to carry a uniformly distributed load of 25 kN/m without exceeding a bending stress of 120 N/mm².
 - (b) A cast iron beam 25 mm square in section and 600 mm long is freely supported at the ends. It fails with a central load of 2.5 kN. What load at the free end will break a cantilever for the same material 50 mm wide \times 100 mm deep and 1500 mm long. [16]

R07

Set No. 3

II B.Tech I Semester Examinations, May 2011 FOUNDATION OF SOLID MECHANICS **Aeronautical Engineering**

Time: 3 hours

Code No: 07A32101

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. A beam section shown in figure 1 is subjected to a shear force of 10kN. Plot a graph showing the variation of shear stress along the depth of section. Determine also the ratio of maximum shear stress and mean shear stress. [16]

- 2. A cantilever of length 3m carries two point loads of 2 kN at the free end and 4 kN at a distance of 1 m from the free end. Find the slope and deflection at the free end. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 10^8 \text{ mm}^4$. 16
- 3. (a) A beam of symmetrical section has a depth of 450 mm and a moment of inertia of $27,536 \times 10^4 \text{ mm}^4$ about its axis of bending. Find the maximum permissible span for this beam if simply supported at the ends. It has to carry a uniformly distributed load of 25 kN/m without exceeding a bending stress of 120 N/mm².
 - (b) A cast iron beam 25 mm square in section and 600 mm long is freely supported at the ends. It fails with a central load of 2.5 kN. What load at the free end will break a cantilever for the same material 50 mm wide \times 100 mm deep and 1500 mm long.[16]
- 4. A welded joint is provided to connect two tie bars 150 mm \times 10mm as shown in figure 4. The working stress in the bar is 120 MN/m^2 . Investigate the design. If the size of the fillet is 12mm. Take the working stress in the end fillet as 102.5 MN/m^2 and that in the diagonal fillet as 70 MN/m^2 . [16]

 $\mathbf{R07}$

[16]

- 5. (a) Derive an expression between shear force and bending moment with suitable assumptions.
 - (b) Draw the shear force & Bending moment diagrams for a cantilever subjected to the loads as shown in figure 5b. [8+8]

- 6. A thin cylinder of internal diameter 2.0 m contains a fluid at an internal pressure of 3 N/mm^2 . Determine the minimum thickness required if:
 - (a) the longitudinal stress is not to exceed 30 N/mm^2 and
 - (b) Circumferential stress is not to exceed 40 N/mm^2 .
- 7. A cantilever of T-section (Flange: 120mm × 20mm; Web: 130 mm × 20mm) is 2.8 m long and the deflection at the free end is not to exceed 2mm, determine: The maximum value of W, Direction of neutral axis with respect to vertical axis. [16]
- 8. A shaft transmits 300 kW power at 120 r.p.m. The allowable shear stress is 70 $\rm N/mm^2.$ Determine:
 - (a) The necessary diameter of solid circular shaft
 - (b) The necessary diameter of hollow circular section, the inside diameter being 2/3 of the external diameter.
 - (c) Taking the density of material is 77 kN/m³, calculate the % saving in the material if hollow shaft is used. [16]