Set No. 2

II B.Tech I Semester Examinations, MAY 2011 **MATHEMATICS - II**

Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: 07A3BS01

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) State and prove Final value theorem.
 - (b) Find z [n Cos n θ].

[8+8]

- 2. (a) Solve the system of non-homogeneous equations x + y + z = 8, 2x + 3y + 2z = 19, 4x + 2y + 3z = 23 using row operations.
 - (b) Find whether the following equations will have a non-trivial solution, if so solve them

$$3x + 4y - z - 6w = 0$$
, $2x + 3y + 2z - w = 0$
 $2x + y - 14z - 9w = 0$, $x + 3y + 13z + 3w = 0$ [8+8]

- (a) Find Fourier series for f(x) = e^x in 0 < x < 1
 (b) Find Fourier series for f(x) = x³ in 0 ≤ x ≤ π [8+8]
- (a) Solve the partial differential equation $q^2 = z^2 p^2 (1 p^2)$
 - (b) Solve the partial differential equation $z^2 = 1 + p^2 + q^2$ [8+8]
- 5. Find the Fourier Sine transform of xe^{-ax} |16|
- 6. Find the Eigen values and eigen vectors of $\begin{bmatrix} 4 & -20 & -10 \\ -2 & 10 & 4 \\ 6 & -30 & -13 \end{bmatrix}$ [16]
- 7. Solve the laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in a rectangular plate, 0 < x < a and 0 < y < b satisfying u(x, 0) = 0, u(x, b) = 0, u(0, y) = 0u(a, y) = ky(b - y), 0 < y < b.
- 8. Diagonalize the following matrices by an Orthogonal transformation. $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$

Set No. 4

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICS - II Common to CE, CHEM, AE, BT, MMT

Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: 07A3BS01

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Solve the laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in a rectangular plate, 0 < x < a and 0 < y < b satisfying $\mathbf{u}(\mathbf{x}, 0) = 0$, $\mathbf{u}(\mathbf{x}, \mathbf{b}) = 0$, $\mathbf{u}(0, \mathbf{y}) = 0$ $\mathbf{u}(\mathbf{a}, \mathbf{y}) = \mathbf{ky}(\mathbf{b} \mathbf{y})$, 0 < y < b. [16]
- 2. (a) State and prove Final value theorem.
 - (b) Find z [n Cos $n\theta$].

[8+8]

- 3. (a) Solve the partial differential equation $q^2 = z^2 p^2 (1 p^2)$
 - (b) Solve the partial differential equation $z^2 = 1 + p^2 + q^2$

[8+8]

- 4. Diagonalize the following matrices by an Orthogonal transformation. $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \\ & & [16] \end{bmatrix}$
- 5. (a) Find Fourier series for $f(x) = e^x$ in 0 < x < 1
 - (b) Find Fourier series for $f(x) = x^3$ in $0 \le x \le \pi$

[8+8]

6. Find the Fourier Sine transform of xe^{-ax}

[16]

- 7. Find the Eigen values and eigen vectors of $\begin{bmatrix} 4 & -20 & -10 \\ -2 & 10 & 4 \\ 6 & -30 & -13 \end{bmatrix}$ [16]
- 8. (a) Solve the system of non-homogeneous equations x + y + z = 8, 2x + 3y + 2z = 19, 4x + 2y + 3z = 23 using row operations.
 - (b) Find whether the following equations will have a non-trivial solution, if so solve them

$$3x + 4y - z - 6w = 0$$
, $2x + 3y + 2z - w = 0$
 $2x + y - 14z - 9w = 0$, $x + 3y + 13z + 3w = 0$ [8+8]

Set No. 1

II B.Tech I Semester Examinations, MAY 2011 **MATHEMATICS - II** Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: 07A3BS01

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) State and prove Final value theorem.

(b) Find z [n Cos n θ].

[8+8]

2. (a) Solve the partial differential equation $q^2=z^2p^2(1-p^2)$

(b) Solve the partial differential equation $z^2 = 1 + p^2 + q^2$

3. Diagonalize the following matrices by an Orthogonal transformation. 1 -1

[16]

4. Find the Eigen values and eigen vectors of [16]

5. Find the Fourier Sine transform of xe^{-ax}

[16]

6. Solve the laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in a rectangular plate, 0 < x < a and 0 < y < b satisfying u(x, 0) = 0, u(x, b) = 0, u(0, y) = 0u(a, y) = ky(b - y), 0 < y < b.[16]

7. (a) Solve the system of non-homogeneous equations x + y + z = 8, 2x + 3y + 2z = 19, 4x + 2y + 3z = 23 using row operations.

(b) Find whether the following equations will have a non-trivial solution, if so solve them

$$3x + 4y - z - 6w = 0$$
, $2x + 3y + 2z - w = 0$
 $2x + y - 14z - 9w = 0$, $x + 3y + 13z + 3w = 0$ [8+8]

8. (a) Find Fourier series for $f(x) = e^x$ in 0 < x < 1

(b) Find Fourier series for $f(x) = x^3$ in $0 \le x \le \pi$ [8+8]

Set No. 3

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICS - II

Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: 07A3BS01

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Find the Eigen values and eigen vectors of $\begin{bmatrix} 4 & -20 & -10 \\ -2 & 10 & 4 \\ 6 & -30 & -13 \end{bmatrix}$ [16]
- 2. (a) State and prove Final value theorem.
 - (b) Find z [n Cos $n\theta$].

[8+8]

- 3. (a) Solve the partial differential equation $q^2 = z^2 p^2 (1 p^2)$
 - (b) Solve the partial differential equation $z^2 = 1 + p^2 + q^2$

[8+8]

- 4. (a) Solve the system of non-homogeneous equations x + y + z = 8, 2x + 3y + 2z = 19, 4x + 2y + 3z = 23 using row operations.
 - (b) Find whether the following equations will have a non-trivial solution, if so solve them

$$3x + 4y - z - 6w = 0, 2x + 3y + 2z - w = 0$$

 $2x + y - 14z - 9w = 0, x + 3y + 13z + 3w = 0$ [8+8]

- 5. (a) Find Fourier series for $f(x) = e^x$ in 0 < x < 1
 - (b) Find Fourier series for $f(x) = x^3$ in $0 \le x \le \pi$

[8+8]

- 6. Diagonalize the following matrices by an Orthogonal transformation. $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ [16]
- 7. Solve the laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in a rectangular plate, 0 < x < a and 0 < y < b satisfying $\mathbf{u}(\mathbf{x}, 0) = 0$, $\mathbf{u}(\mathbf{x}, \mathbf{b}) = 0$, $\mathbf{u}(0, \mathbf{y}) = 0$ $\mathbf{u}(\mathbf{a}, \mathbf{y}) = \mathbf{ky}(\mathbf{b} \mathbf{y})$, 0 < y < b. [16]
- 8. Find the Fourier Sine transform of xe^{-ax}

[16]