II B.Tech I Semester Examinations,MAY 2011
 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
 Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Prove that in any non directed graph there is even no of vertices of odd degree
(b) is there a graph with degree sequence $(1,3,3,3,5,6,6)$
(c) is there a simple graph with degree sequence $(1,1,3,3,3,5,5,6),[8+4+4]$
2. (a) Show that the proposition: $\sim P \rightarrow(P \rightarrow Q)$ is a universally valid formula.
(b) Prove the implication: $(P \rightarrow(Q \rightarrow R)) \Rightarrow(P \rightarrow Q) \rightarrow(P-R) . \quad[8+8]$
3. Consider the semigroups: $\left(\mathrm{S}, \mathcal{*}_{1}\right)$ and $\left(\mathrm{T}, *_{2}\right)$, where $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{T}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $*_{1}$ and $*_{2}$ are defined by the following tables:

$*_{1}$	a	b	c
a	a	b	c
d	b	c	a
c	c	a	b

Let the function $f=S \rightarrow$ T defined by: $f(a)=y, f(b)=x, f(c)=z$. Show that f is an isomorphic:
4. (a) Find the inverse of the following functions:
i. $f(x)=\frac{10}{\sqrt[5]{7-3 x}}$
ii. $\mathrm{f}(\mathrm{x})=4 e^{(6 x+2)}$.
(b) Draw the Hasse diagram for the relation R on $\mathrm{A}=\{1,2,3,4,5\}$, whose relation matrix is given below:
$M_{R}=\left\{\begin{array}{lllll}1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right\}$
5. (a) Using propositional logic, prove the validity of the following argument:
$\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}), \mathrm{Q} \rightarrow(\mathrm{R} \rightarrow \mathrm{S}) \Rightarrow \mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{S})$
(b) Determine the validity of the following arguments using propositional logic: "If today is Sunday, then yesterday was Saturday. Yesterday was Saturday. Therefore, Today is Sunday".
6. (a) There are 30 girls and 35 boys in the junior's class while there are 25 girls and 20 boys in the senior's class. In how many ways can a committee of 10 be chosen so that there are exactly 5 girls and 3 juniors on the committee?
(b) How many 5 digit mobile numbers have one or more repeated digits? [8+8]
7. Show that $(1-4 x)^{-1 / 2}$ generates the sequence $C(2 n, n), n \in N$.
8. (a) Find a self complementary simple graph with 5 vertices.
(b) Show that the figure6b is self-complementary.

Figure 6b

II B.Tech I Semester Examinations,MAY 2011
 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
 Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Show that $(1-4 x)^{-1 / 2}$ generates the sequence $C(2 n, n), n \in N$.
2. (a) Find a self complementary simple graph with 5 vertices.
(b) Show that the figure6b is self-complementary.

Figure 6b
3. (a) Show that the proposition: $\sim P \rightarrow(P \rightarrow Q)$ is a universally valid formula.
(b) Prove the implication: $(P \rightarrow(Q \rightarrow R)) \Rightarrow(P \rightarrow Q) \rightarrow(P \rightarrow R) . \quad[8+8]$
4. (a) There are 30 girls and 35 boys in the junior's class while there are 25 girls and 20 कoys in the senior's class. In how many ways can a committee of 10 be chosen so that there are exactly 5 girls and 3 juniors on the committee?
(b) How many 5 digit mobile numbers have one or more repeated digits? [8+8]
5. Consider the semigroups: $\left(\mathrm{S}, \mathcal{*}_{1}\right)$ and $\left(\mathrm{T}, \mathcal{*}_{2}\right)$, where $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{T}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $*_{1}$ and $*_{2}$ are defined by the following tables:

$*_{1}$	a	b	c
a	a	b	c
d	b	c	a
c	c	a	b

*!	x	y	z
x	z	x	y
y	x	y	z
z	y	z	x

Let the function $f: S \rightarrow T$ defined by: $f(a)=y, f(b)=x, f(c)=z$. Show that f is an isomorphic.
6. (a) Using propositional logic, prove the validity of the following argument:

$$
\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}), \mathrm{Q} \rightarrow(\mathrm{R} \rightarrow \mathrm{~S}) \Rightarrow \mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{~S})
$$

(b) Determine the validity of the following arguments using propositional logic: "If today is Sunday, then yesterday was Saturday. Yesterday was Saturday. Therefore, Today is Sunday".
7. (a) Find the inverse of the following functions:
i. $\mathrm{f}(\mathrm{x})=\frac{10}{\sqrt[5]{7-3 x}}$
ii. $\mathrm{f}(\mathrm{x})=4 e^{(6 x+2)}$.
(b) Draw the Hasse diagram for the relation R on $\mathrm{A}=\{1,2,3,4,5\}$, whose relation matrix is given below:

$$
M_{R}=\left\{\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right\}
$$

8. (a) Prove that in any non directed graph there is even no of vertrices of odd degree
(b) is there a graph with degree sequence $(1,3,3,3,5,6,6)$
(c) is there a simple graph with degree sequence $(1,1,3,3,3,5,5,6)$. $[8+4+4]$

II B.Tech I Semester Examinations,MAY 2011
 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
 Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Show that $(1-4 x)^{-1 / 2}$ generates the sequence $C(2 n, n), n \in N$.
2. (a) There are 30 girls and 35 boys in the junior's class while there are 25 girls and 20 boys in the senior's class. In how many ways can a committee of 10 be chosen so that there are exactly 5 girls and 3 juniors on the committee?
(b) How many 5 digit mobile numbers have one or more repeated digits? [8+8]
3. Consider the semigroups: $\left(S, *_{1}\right)$ and $\left(T, *_{2}\right)$, where $S=\{a, b, c\}, T=\{x, y, z\}$ and $*_{1}$ and $*_{2}$ are defined by the following tables:

$*_{1}$	a	b	c
a	a	b	c
d	b	c	a
c	c	a	b

Let the function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ defined by: $\mathrm{f}(\mathrm{a})=\mathrm{y}, \mathrm{f}(\mathrm{b})=\mathrm{x}, \mathrm{f}(\mathrm{c})=\mathrm{z}$. Show that f is an isomorphic.
4. (a) Show that the proposition: $\sim P \rightarrow(P \rightarrow Q)$ is a universally valid formula.
(b) Prove the implication: $(P \rightarrow(Q \rightarrow R)) \Rightarrow(P \rightarrow Q) \rightarrow(P \rightarrow R) . \quad[8+8]$
5. (a) Prove that in any non directed graph there is even no of vertices of odd degree
(b) is there a graph with degree sequence $(1,3,3,3,5,6,6)$
(c) is there a simple graph with degree sequence $(1,1,3,3,3,5,5,6)$. $[8+4+4]$
6. (a) Find the inverse of the following functions:

$$
\begin{aligned}
& \text { i. } \mathrm{f}(\mathrm{x})=\frac{10}{\sqrt[5]{7-3 x}} \\
& \text { ii. } \mathrm{f}(\mathrm{x})=4 e^{(6 x+2)}
\end{aligned}
$$

(b) Draw the Hasse diagram for the relation R on $\mathrm{A}=\{1,2,3,4,5\}$, whose relation matrix is given below:

$$
M_{R}=\left\{\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right\}
$$

7. (a) Find a self complementary simple graph with 5 vertices.
(b) Show that the figure6b is self-complementary.

Figure 6b
8. (a) Using propositional logic, prove the validity of the following argument: $\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}), \mathrm{Q} \rightarrow(\mathrm{R} \rightarrow \mathrm{S}) \Rightarrow \mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{S})$
(b) Determine the validity of the following arguments using propositional logic: "If today is Sunday, then yesterday was Saturday. Yesterday was Saturday. Therefore, Today is Sunday".

II B.Tech I Semester Examinations,MAY 2011
 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
 Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Show that the proposition: $\sim P \rightarrow(P \rightarrow Q)$ is a universally valid formula.
(b) Prove the implication: $(P \rightarrow(Q \rightarrow R)) \Rightarrow(P \rightarrow Q) \rightarrow(P \rightarrow R) .[8+8]$
2. Show that $(1-4 x)^{-1 / 2}$ generates the sequence $C(2 n, n), n \in N_{\text {}}$
[16]
3. (a) Using propositional logic, prove the validity of the following argument:
$\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}), \mathrm{Q} \rightarrow(\mathrm{R} \rightarrow \mathrm{S}) \Rightarrow \mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{S})$
(b) Determine the validity of the following arguments using propositional logic: "If today is Sunday, then yesterday was Saturday. Yesterday was Saturday. Therefore, Today is Sunday"
4. Consider the semigroups: $\left(\mathrm{S}, \boldsymbol{*}_{1}\right)$ and $\left(\mathrm{T}, \boldsymbol{*}_{2}\right)$, where $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{T}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $*_{1}$ and $*_{2}$ are defined by the following tables:

$*_{1}$	a	b	c
a	a	b	c
d	b	e	a
c	c	a	b

Let the function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ defined by: $\mathrm{f}(\mathrm{a})=\mathrm{y}, \mathrm{f}(\mathrm{b})=\mathrm{x}, \mathrm{f}(\mathrm{c})=\mathrm{z}$. Show that f is an isomorphic.
5. (a) There are 30 girls and 35 boys in the junior's class while there are 25 girls and 20 boys in the senior's class. In how many ways can a committee of 10 be chosen so that there are exactly 5 girls and 3 juniors on the committee?
(b) How many 5 digit mobile numbers have one or more repeated digits? [8+8]
6. (a) Find a self complementary simple graph with 5 vertices.
(b) Show that the figure6b is self-complementary.

Figure 6b
7. (a) Find the inverse of the following functions:
i. $\mathrm{f}(\mathrm{x})=\frac{10}{\sqrt[5]{7-3 x}}$
ii. $\mathrm{f}(\mathrm{x})=4 e^{(6 x+2)}$.
(b) Draw the Hasse diagram for the relation R on $\mathrm{A}=\{1,2,3,4,5\}$, whose relation matrix is given below:

$$
M_{R}=\left\{\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right\}
$$

8. (a) Prove that in any non directed graph there is even no of vertrices of odd degree
(b) is there a graph with degree sequence $(1,3,3,3,5,6,6)$
(c) is there a simple graph with degree sequence $(1,1,3,3,3,5,5,6)$. $[8+4+4]$
