Set No. 2

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Common to Information Technology, Computer Science And Engineering,

Computer Science And Systems Engineering

Max Marks: 80

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) Prove that in any non directed graph there is even no of vertices of odd degree
 - (b) is there a graph with degree sequence (1, 3, 3, 3, 5, 6, 6)
 - (c) is there a simple graph with degree sequence (1, 1, 3, 3, 3, 5, 5, 6). [8+4+4]
- 2. (a) Show that the proposition: $\sim P \to (P \to Q)$ is a universally valid formula.
 - (b) Prove the implication: $(P \to (Q \to R)) \Rightarrow (P \to Q) \to (P \to R)$. [8+8]
- 3. Consider the semigroups: (S, $*_1$) and (T, $*_2$), where $S = \{a, b, c\}$, $T = \{x, y, z\}$ and $*_1$ and $*_2$ are defined by the following tables:

*1	a	b	С
a	a	b	С
d	b	С	a
С	С	a	b

Code No: 07A3BS04

*!	X	у	Z
X	Z	X	у
У	X	у	Z
Z	У	Z	X

Let the function $f: S \to T$ defined by: f(a) = y, f(b) = x, f(c) = z. Show that f is an isomorphic. [16]

4. (a) Find the inverse of the following functions:

i.
$$f(x) = \frac{10}{\sqrt[5]{7-3x}}$$

ii. $f(x) = 4e^{(6x+2)}$

(b) Draw the Hasse diagram for the relation R on $A = \{1, 2, 3, 4, 5\}$, whose relation matrix is given below: [8+8]

$$M_R = \left\{ \begin{array}{ccccc} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right\}$$

- 5. (a) Using propositional logic, prove the validity of the following argument: $P \to (Q \to R), Q \to (R \to S) \Rightarrow P \to (Q \to S)$
 - (b) Determine the validity of the following arguments using propositional logic: "If today is Sunday, then yesterday was Saturday. Yesterday was Saturday. Therefore, Today is Sunday". [8+8]
- 6. (a) There are 30 girls and 35 boys in the junior's class while there are 25 girls and 20 boys in the senior's class. In how many ways can a committee of 10 be chosen so that there are exactly 5 girls and 3 juniors on the committee?

Code No: 07A3BS04

R07

Set No. 2

- (b) How many 5 digit mobile numbers have one or more repeated digits? [8+8]
- 7. Show that $(1-4x)^{-1/2}$ generates the sequence C(2n,n), $n \in N$. [16]
- 8. (a) Find a self complementary simple graph with 5 vertices.
 - (b) Show that the figure 6b is self-complementary.

[8+8]

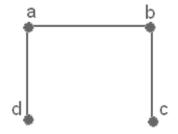


Figure 6b

Code No: 07A3BS04

R07

Set No. 4

Max Marks: 80

II B.Tech I Semester Examinations, MAY 2011
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
Common to Information Technology, Computer Science And Engineering,

Computer Science And Systems Engineering

Time: 3 hours

Answer any FIVE Questions
All Questions carry equal marks

1. Show that $(1-4x)^{-1/2}$ generates the sequence C(2n,n), $n \in N$.

[16]

- 2. (a) Find a self complementary simple graph with 5 vertices.
 - (b) Show that the figure 6b is self-complementary.

[8+8]

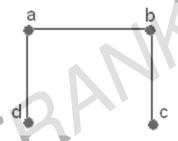


Figure 6b

- 3. (a) Show that the proposition: $\sim P \rightarrow (P \rightarrow Q)$ is a universally valid formula.
 - (b) Prove the implication: $(P \to (Q \to R)) \Rightarrow (P \to Q) \to (P \to R)$. [8+8]
- 4. (a) There are 30 girls and 35 boys in the junior's class while there are 25 girls and 20 boys in the senior's class. In how many ways can a committee of 10 be chosen so that there are exactly 5 girls and 3 juniors on the committee?
 - (b) How many 5 digit mobile numbers have one or more repeated digits? [8+8]
- 5. Consider the semigroups: (S, $*_1$) and (T, $*_2$), where S = {a, b, c}, T = {x, y, z} and $*_1$ and $*_2$ are defined by the following tables:

*1	a	b	С
a	a	b	С
d	b	С	a
С	С	a	b

*!	X	У	Z
X	Z	X	У
У	X	У	Z
Z	У	Z	X

Let the function $f: S \to T$ defined by: f(a) = y, f(b) = x, f(c) = z. Show that f is an isomorphic. [16]

- 6. (a) Using propositional logic, prove the validity of the following argument: $P \to (Q \to R), Q \to (R \to S) \Rightarrow P \to (Q \to S)$
 - (b) Determine the validity of the following arguments using propositional logic: "If today is Sunday, then yesterday was Saturday. Yesterday was Saturday. Therefore, Today is Sunday". [8+8]

Set No. 4

7. (a) Find the inverse of the following functions:

i.
$$f(x) = \frac{10}{\sqrt[5]{7-3x}}$$

ii. $f(x) = 4e^{(6x+2)}$.

Code No: 07A3BS04

(b) Draw the Hasse diagram for the relation R on $A = \{1, 2, 3, 4, 5\}$, whose relation matrix is given below: [8+8]

$$M_R = \left\{ \begin{array}{ccccc} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right\}$$

- 8. (a) Prove that in any non directed graph there is even no of vertices of odd degree
 - (b) is there a graph with degree sequence (1, 3, 3, 3, 5, 6, 6)
 - (c) is there a simple graph with degree sequence (1,1,3,3,3,5,5,6). [8+4+4]

Set No. 1

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Show that $(1-4x)^{-1/2}$ generates the sequence C(2n,n), $n \in \mathbb{N}$.
- 2. (a) There are 30 girls and 35 boys in the junior's class while there are 25 girls and 20 boys in the senior's class. In how many ways can a committee of 10 be chosen so that there are exactly 5 girls and 3 juniors on the committee?
 - (b) How many 5 digit mobile numbers have one or more repeated digits? [8+8]
- 3. Consider the semigroups: $(S, *_1)$ and $(T, *_2)$, where $S = \{a, b, c\}$, $T = \{x, y, z\}$ and $*_1$ and $*_2$ are defined by the following tables:

*1	a	b	С
a	a	b	С
d	b	С	a
С	С	a	b

Code No: 07A3BS04

*!	X	У	Ż
X	Z	X	у
У	X	У	Z
Z	У	Z	X

Let the function $f: S \to T$ defined by: f(a) = y, f(b) = x, f(c) = z. Show that f is an isomorphic. [16]

- 4. (a) Show that the proposition: $\sim P \to (P \to Q)$ is a universally valid formula.
 - (b) Prove the implication: $(P \to (Q \to R)) \Rightarrow (P \to Q) \to (P \to R)$. [8+8]
- 5. (a) Prove that in any non directed graph there is even no of vertices of odd degree
 - (b) is there a graph with degree sequence (1, 3, 3, 3, 5, 6, 6)
 - (c) is there a simple graph with degree sequence $(1,\,1,\,3,\,3,\,3,\,5,\,5,\,6)$. [8+4+4]
- 6. (a) Find the inverse of the following functions:

i.
$$f(x) = \frac{10}{\sqrt[5]{7-3x}}$$

ii. $f(x) = 4e^{(6x+2)}$.

(b) Draw the Hasse diagram for the relation R on $A = \{1, 2, 3, 4, 5\}$, whose relation matrix is given below: [8+8]

$$M_R = \left\{ \begin{array}{ccccc} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right\}$$

7. (a) Find a self complementary simple graph with 5 vertices.

Code No: 07A3BS04

R07

Set No. 1

(b) Show that the figure 6b is self-complementary.

[8+8]

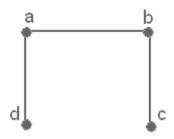


Figure 6b

- 8. (a) Using propositional logic, prove the validity of the following argument: $P \to (Q \to R), Q \to (R \to S) \Rightarrow P \to (Q \to S)$
 - (b) Determine the validity of the following arguments using propositional logic: "If today is Sunday, then yesterday was Saturday. Yesterday was Saturday. Therefore, Today is Sunday". [8+8]

Set No. 3

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Show that the proposition: $\sim P \to (P \to Q)$ is a universally valid formula.

(b) Prove the implication: $(P \to (Q \to R)) \Rightarrow (P \to Q) \to (P \to R)$ [8+8]

2. Show that $(1-4x)^{-1/2}$ generates the sequence C(2n,n), $n \in \mathbb{N}$

3. (a) Using propositional logic, prove the validity of the following argument: $P \to (Q \to R), Q \to (R \to S) \Rightarrow P \to (Q \to S)$

(b) Determine the validity of the following arguments using propositional logic: "If today is Sunday, then yesterday was Saturday. Yesterday was Saturday. Therefore, Today is Sunday". [8+8]

4. Consider the semigroups: (S, $*_1$) and (T, $*_2$), where S = {a, b, c}, T = {x, y, z} and $*_1$ and $*_2$ are defined by the following tables:

*1	a	b	С
a	a	b	C
d	b	c	a
С	С	a	b

Code No: 07A3BS04

*!	Х	у	Z
X	Z	X	У
У	X	У	Z
Z	У	Z	X

Let the function $f: S \to T$ defined by: f(a) = y, f(b) = x, f(c) = z. Show that f is an isomorphic. [16]

- 5. (a) There are 30 girls and 35 boys in the junior's class while there are 25 girls and 20 boys in the senior's class. In how many ways can a committee of 10 be chosen so that there are exactly 5 girls and 3 juniors on the committee?
 - (b) How many 5 digit mobile numbers have one or more repeated digits? [8+8]
- 6. (a) Find a self complementary simple graph with 5 vertices.
 - (b) Show that the figure 6b is self-complementary. [8+8]

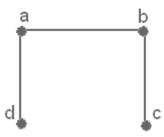


Figure 6b

Set No. 3

7. (a) Find the inverse of the following functions:

i.
$$f(x) = \frac{10}{\sqrt[5]{7-3x}}$$

Code No: 07A3BS04

ii.
$$f(x) = 4e^{(6x+2)}$$
.

(b) Draw the Hasse diagram for the relation R on $A = \{1, 2, 3, 4, 5\}$, whose relation matrix is given below: [8+8]

$$M_R = \left\{ \begin{array}{ccccc} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right\}$$

- 8. (a) Prove that in any non directed graph there is even no of vertices of odd degree
 - (b) is there a graph with degree sequence (1, 3, 3, 3, 5, 6, 6)
 - (c) is there a simple graph with degree sequence (1,1,3,3,3,5,5,6). [8+4+4]

