R07

Set No. 2

II B.Tech I Semester Examinations, May 2011 SWITCHING THOERY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Differentiate between synchronous and asynchronous circuits.

(b) Design a 2 to 4 decoder using NAND gates

[8+8]

2. Draw an ASM chart for a synchronous sequential logic circuit which produces an output "THREE 1s" if three or more consecutive 1's follow the last 0 output. Design the data processing unit and a control unit for implementing the design.

|16|

- 3. Explain the procedure for the following with an example
 - (a) Conversion from Binary to decimal number
 - (b) Binary subtraction using 1's complement
 - (c) Binary subtraction using 2's complement
 - (d) Conversion from gray to binary number

[16]

- 4. (a) Design a 4-bit Bidirectional Shift Register.
 - (b) Convert D flip flop to T flip flop.

[8+8]

5. Convert the following Mealy machine into a corresponding Moore machine. [16]

PS	NS,Z	
	X=0	X=1
A	C,0	В,0
В	A,1	D,0
С	В,1	A,1
D	D,1	C,0

- 6. Design a combinational logic circuit with 4 inputs A, B, C, D. The output Y goes HIGH if and only if A and C inputs go HIGH. Draw the Truth table. Minimize the Boolean function using K-map. Draw the circuit diagram. [16]
- 7. Implement the following functions in a ROM. Specify the size of ROMs required to implement the following functions
 - (a) Full adder
 - (b) Binary to BCD converter

[16]

8. (a) Convert the following SOP equation into its POS form. G = XY'Z + X'YZ'

R07

Set No. 2

(b) Reduce the following Boolean expressions to three literals. A'C' + ABC + AC'

8+8]

R07

Set No. 4

II B.Tech I Semester Examinations, May 2011 SWITCHING THOERY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. Draw an ASM chart for a synchronous sequential logic circuit which produces an output "THREE 1s" if three or more consecutive 1's follow the last 0 output. Design the data processing unit and a control unit for implementing the design.

[16]

- 2. (a) Differentiate synchronous and asynchronous circuits
 - (b) Design a 2 to 4 decoder using NAND gates

[8+8]

- 3. Implement the following functions in a ROM. Specify the size of ROMs required to implement the following functions
 - (a) Full adder

Code No: 07A3EC03

(b) Binary to BCD converter

[16]

- 4. Design a combinational logic circuit with 4 inputs A, B, C, D. The output Y goes HIGH if and only if A and C inputs go HIGH. Draw the Truth table. Minimize the Boolean function using K-map. Draw the circuit diagram. [16]
- 5. Convert the following Mealy machine into a corresponding Moore machine. [16]

PS	NS,Z	
	X=0	X=1
A	C,0	В,0
В	A,1	D,0
С	В,1	A,1
D	D,1	C,0

- 6. Explain the procedure for the following with an example
 - (a) Conversion from Binary to decimal number
 - (b) Binary subtraction using 1's complement
 - (c) Binary subtraction using 2's complement
 - (d) Conversion from gray to binary number

[16]

- 7. (a) Design a 4-bit Bidirectional Shift Register.
 - (b) Convert D flip flop to T flip flop.

[8+8]

8. (a) Convert the following SOP equation into its POS form. G = XY'Z + X'YZ'

R07

Set No. 4

(b) Reduce the following Boolean expressions to three literals. A'C' + ABC + AC'

8+8]

R07

Set No. 1

II B.Tech I Semester Examinations, May 2011 SWITCHING THOERY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Design a combinational logic circuit with 4 inputs A, B, C, D. The output Y goes HIGH if and only if A and C inputs go HIGH. Draw the Truth table. Minimize the Boolean function using K-map. Draw the circuit diagram. [16]
- 2. (a) Convert the following SOP equation into its POS form. G = XY'Z + X'YZ'
 - (b) Reduce the following Boolean expressions to three literals. $A'C' + ABC + AC' \qquad \qquad 8+8]$
- 3. Explain the procedure for the following with an example
 - (a) Conversion from Binary to decimal number
 - (b) Binary subtraction using 1's complement
 - (c) Binary subtraction using 2's complement
 - (d) Conversion from gray to binary number [16]
- 4. (a) Differentiate synchronous and asynchronous circuits
 - (b) Design a 2 to 4 decoder using NAND gates [8+8]
- 5. Convert the following Mealy machine into a corresponding Moore machine. [16]

PS	NS,Z	
	X=0	X=1
A	C,0	В,0
В	A,1	D,0
С	В,1	A,1
D	D,1	C,0

- 6. (a) Design a 4-bit Bidirectional Shift Register.
 - (b) Convert D flip flop to T flip flop.

[8+8]

7. Draw an ASM chart for a synchronous sequential logic circuit which produces an output "THREE 1s" if three or more consecutive 1's follow the last 0 output. Design the data processing unit and a control unit for implementing the design.

[16]

- 8. Implement the following functions in a ROM. Specify the size of ROMs required to implement the following functions
 - (a) Full adder

R07

Set No. 1

(b) Binary to BCD converter

Code No: 07A3EC03

[16]

R07

Set No. 3

II B.Tech I Semester Examinations, May 2011 SWITCHING THOERY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Differentiate synchronous and asynchronous circuits

(b) Design a 2 to 4 decoder using NAND gates

[8+8]

2. Draw an ASM chart for a synchronous sequential logic circuit which produces an output "THREE 1s" if three or more consecutive 1's follow the last 0 output. Design the data processing unit and a control unit for implementing the design.

|16|

- 3. Explain the procedure for the following with an example
 - (a) Conversion from Binary to decimal number
 - (b) Binary subtraction using 1's complement
 - (c) Binary subtraction using 2's complement
 - (d) Conversion from gray to binary number

[16]

4. Convert the following Mealy machine into a corresponding Moore machine. [16]

PS	NS,Z	
	X=0	X=1
A	C,0	В,0
В	A,1	D,0
С	B,1	A,1
D	D,1	C,0

5. (a) Design a 4-bit Bidirectional Shift Register.

(b) Convert D flip flop to T flip flop.

[8+8]

- 6. Implement the following functions in a ROM. Specify the size of ROMs required to implement the following functions
 - (a) Full adder

(b) Binary to BCD converter

[16]

- 7. Design a combinational logic circuit with 4 inputs A, B, C, D. The output Y goes HIGH if and only if A and C inputs go HIGH. Draw the Truth table. Minimize the Boolean function using K-map. Draw the circuit diagram. [16]
- 8. (a) Convert the following SOP equation into its POS form.

G = XY'Z + X'YZ'

R07

Set No. 3

(b) Reduce the following Boolean expressions to three literals. A'C' + ABC + AC'

8+8]
