R07

II B.Tech I Semester Examinations, MAY 2011 ELECTROMAGNETIC FIELDS Common to Electronics And Control Engineering, Electrical And Electronics Engineering

Time: 3 hours

Code No: 07A3EC04

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. If the magnetic field intensity $\overline{H} = (x^2 \overline{a} \overline{x} + 2yz \overline{a} \overline{y} x^2 \overline{a} \overline{z})$ A/M. Find the current density at (2, 3, 4). [16]
- 2. (a) Moist rod has conductivity $10^{-3}mho/m$ and $e_r = 2.5$. Find \bar{J}_C and \bar{J}_D where $E = 6 \times 10^{-6} \sin 9 \times 10^9 t(v/m)$.
 - (b) Explain what is meant by displacement current deduce equation of continuity of current $div\left(\bar{J} + \frac{\delta\bar{D}}{\delta t}\right) = 0.$ [8+8]
- 3. (a) State and explain Gauss's law.

(b) Given
$$\overline{D} = 2xy \,\overline{\partial}_x + z \,\overline{\partial}_y + yz^2 \overline{\partial}_z$$
, find $\nabla .\overline{D}$ at p(2, -1, 3). [8+8]

- 4. (a) Derive an expression for force between two straight long parallel conductors carrying currents in the same direction
 - (b) A current element 2m in length lies along the y-axis direction centered at the origin. The current is 5 amps in the \bar{a}_y direction. If it experiences a force 1.5 $\left(\frac{\bar{a}_x + \bar{a}_x}{\sqrt{2}}\right)$ N due to a uniform field \bar{B} , determine \bar{B} . [8+8]
- 5. (a) What is a dipole? Derive expression for Torque experienced by a dipole in uniform electric field.
 - (b) Verify that the potential field given below satisfies the Laplace's equation. $V = 4x^2 - 6y^2 + 2z^2$. [8+8]
- 6. Derive Neuman's formula for mutual inductance considering two loops carrying currents I_1 and I_2 . [16]
- 7. Derive the expression for capacitance of a parallel plate capacitor with single dielectric. Also derive the expression for the capacitance of a parallel plate capacitor with two dielectric. [16]
- 8. Find the expression for the magnetic flux density \overline{B} at a distance 'h' above the centre of a rectangular loop of wire 'b' m on one side and 'a' m on the other side. The loop carries a current of I amps. [16]

1

 $\mathbf{R07}$

II B.Tech I Semester Examinations,MAY 2011 ELECTROMAGNETIC FIELDS Common to Electronics And Control Engineering, Electrical And Electronics Engineering

Time: 3 hours

Code No: 07A3EC04

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) State and explain Gauss's law.
 - (b) Given $\overline{D} = 2xy \overline{\partial}_x + z \overline{\partial}_y + yz^2 \overline{\partial}_z$, find $\nabla \overline{D}$ at p(2, -1, 3). [8+8]
- 2. (a) What is a dipole? Derive expression for Torque experienced by a dipole in uniform electric field.
 - (b) Verify that the potential field given below satisfies the Laplace's equation. $V = 4x^2 - 6y^2 + 2z^2$. [8+8]
- 3. (a) Moist rod has conductivity $10^{-3}mho/m$ and $e_r = 2.5$. Find \bar{J}_C and \bar{J}_D where $E = 6 \times 10^{-6} \sin 9 \times 10^9 t (v/m)$.
 - (b) Explain what is meant by displacement current deduce equation of continuity of current $div\left(\bar{J} + \frac{\delta\bar{D}}{\delta t}\right) = 0.$ [8+8]
- 4. Derive the expression for capacitance of a parallel plate capacitor with single dielectric. Also derive the expression for the capacitance of a parallel plate capacitor with two dielectric. [16]
- 5. If the magnetic field intensity $\bar{H} = (x^2 \bar{a} \bar{x} + 2yz \bar{a} \bar{y} x^2 \bar{a} \bar{z})$ A/M. Find the current density at (2, 3, 4). [16]
- 6. Derive Neuman's formula for mutual inductance considering two loops carrying currents I_1 and I_2 . [16]
- 7. Find the expression for the magnetic flux density \overline{B} at a distance 'h' above the centre of a rectangular loop of wire 'b' m on one side and 'a' m on the other side. The loop carries a current of I amps. [16]
- 8. (a) Derive an expression for force between two straight long parallel conductors carrying currents in the same direction
 - (b) A current element 2m in length lies along the y-axis direction centered at the origin. The current is 5 amps in the \bar{a}_y direction. If it experiences a force 1.5 $\left(\frac{\bar{a}_x + \bar{a}_z}{\sqrt{2}}\right)$ N due to a uniform field \bar{B} , determine \bar{B} . [8+8]

R07

II B.Tech I Semester Examinations,MAY 2011 ELECTROMAGNETIC FIELDS Common to Electronics And Control Engineering, Electrical And Electronics Engineering

Time: 3 hours

Code No: 07A3EC04

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Find the expression for the magnetic flux density \overline{B} at a distance 'h' above the centre of a rectangular loop of wire 'b' m on one side and 'a' m on the other side. The loop carries a current of I amps. [16]
- 2. (a) Moist rod has conductivity $10^{-3}mho/m$ and $e_r = 2.5$. Find \bar{J}_C and \bar{J}_D where $E = 6 \times 10^{-6} \sin 9 \times 10^9 t(v/m)$.
 - (b) Explain what is meant by displacement current deduce equation of continuity of current $div\left(\bar{J} + \frac{\delta\bar{D}}{\delta t}\right) = 0.$ [8+8]
- 3. Derive the expression for capacitance of a parallel plate capacitor with single dielectric. Also derive the expression for the capacitance of a parallel plate capacitor with two dielectric. [16]
- 4. (a) Derive an expression for force between two straight long parallel conductors carrying currents in the same direction
 - (b) A current element 2m in length lies along the y-axis direction centered at the origin. The current is 5 amps in the \bar{a}_y direction. If it experiences a force 1.5 $\left(\frac{\bar{a}_x + \bar{a}_x}{\sqrt{2}}\right)$ N due to a uniform field \bar{B} , determine \bar{B} . [8+8]
- 5. If the magnetic field intensity $\bar{H} = (x^2 \bar{a} \bar{x} + 2yz \bar{a} \bar{y} x^2 \bar{a} \bar{z})$ A/M. Find the current density at (2, 3, 4). [16]
- 6. (a) What is a dipole? Derive expression for Torque experienced by a dipole in uniform electric field.
 - (b) Verify that the potential field given below satisfies the Laplace's equation. $V = 4x^2 - 6y^2 + 2z^2$. [8+8]
- 7. (a) State and explain Gauss's law.
 - (b) Given $\overline{D} = 2xy \,\overline{\partial}_x + z \,\overline{\partial}_y + yz^2 \overline{\partial}_z$, find $\nabla \overline{D}$ at p(2, -1, 3). [8+8]
- 8. Derive Neuman's formula for mutual inductance considering two loops carrying currents I_1 and I_2 . [16]

3

R07

II B.Tech I Semester Examinations,MAY 2011 ELECTROMAGNETIC FIELDS Common to Electronics And Control Engineering, Electrical And Electronics Engineering

Time: 3 hours

Code No: 07A3EC04

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Derive Neuman's formula for mutual inductance considering two loops carrying currents I_1 and I_2 . [16]
- 2. Find the expression for the magnetic flux density \overline{B} at a distance 'h' above the centre of a rectangular loop of wire 'b' m on one side and 'a' m on the other side. The loop carries a current of I amps. [16]
- 3. (a) Derive an expression for force between two straight long parallel conductors carrying currents in the same direction
 - (b) A current element 2m in length lies along the y-axis direction centered at the origin. The current is 5 amps in the \bar{a}_y direction. If it experiences a force 1.5 $\left(\frac{\bar{a}_x + \bar{a}_z}{\sqrt{2}}\right)$ N due to a uniform field \bar{B} , determine \bar{B} . [8+8]
- 4. Derive the expression for capacitance of a parallel plate capacitor with single dielectric. Also derive the expression for the capacitance of a parallel plate capacitor with two dielectric. [16]
- 5. (a) What is a dipole? Derive expression for Torque experienced by a dipole in uniform electric field.
 - (b) Verify that the potential field given below satisfies the Laplace's equation. $V = 4x^2 - 6y^2 + 2z^2$. [8+8]
- 6. (a) Moist rod has conductivity $10^{-3}mho/m$ and $e_r = 2.5$. Find \bar{J}_C and \bar{J}_D where $E = 6 \times 10^{-6} \sin 9 \times 10^9 t (v/m)$.
 - (b) Explain what is meant by displacement current deduce equation of continuity of current $div\left(\bar{J} + \frac{\delta\bar{D}}{\delta t}\right) = 0.$ [8+8]
- 7. (a) State and explain Gauss's law.
 - (b) Given $\overline{D} = 2xy \,\overline{\partial}_x + z \,\overline{\partial}_y + yz^2 \overline{\partial}_z$, find $\nabla .\overline{D}$ at p(2, -1, 3). [8+8]
- 8. If the magnetic field intensity $\overline{H} = (x^2 \overline{a} \overline{x} + 2yz \overline{a} \overline{y} x^2 \overline{a} \overline{z})$ A/M. Find the current density at (2, 3, 4). [16]

4