R07

Set No. 2

II B.Tech I Semester Examinations, MAY 2011 THERMODYNAMICS

Common to Mechanical Engineering, Aeronautical Engineering, Automobile Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) What are the advantages associated with the diesel cycle as compared to the otto cycle?
 - (b) A gas engine working on Otto cycle has a cylinder of diameter 220 mm and stroke 300 mm. The clearance volume is 1800 cc. Find the air-standard efficiency. Assume $C_p = 1.004 \text{ kJ/kg.K}$ and $C_v = 0.718 \text{ kJ/kg.K}$ for air. [6+10]
- 2. (a) Explain with a neat sketch P-V-T diagram.
 - (b) 2 kg of steam expands adiabatically from 20 bar, 300°C to 0.5 bar in a steam turbine such that the steam is dry and saturated at the end of expansion. Calculate
 - i. the work done by steam, and
 - ii. work lost due to irreversibility.

[8+8]

- 3. (a) What is an equation of state?
 - (b) Air at 16° C and 1.02 bar occupies a volume of $0.03~m^3$. The air is heated at constant volume until the pressure is 4.3 bar and then cooled at constant pressure back to the original temperature. calculate
 - i. The net heat flow to or from the air and
 - ii. The net entropy change.

[6+10]

- 4. (a) Explain with neat sketch the working of vapour compression refrigeration cycle
 - (b) Describe a binary vapour cycle with the help of schematic diagram of the plant and T-S diagram of the cycle. [8+8]
- 5. An engine working on Carnot cycle absorbs Q_1 units of heat from a source at T_1 and rejects Q_2 units of heat to a sink at T_2 . Te temperature of the working fluid is θ_1 and θ_2 , where $\theta_1 < T_1$ and $\theta_2 > T_2$,

If $\theta_1 = T_1$ -K Q_1 and $\theta_2 = T_2$ +k Q_2

where k is constant, then show that efficiency of the engine is given by:

$$\eta = 1 - \frac{T_2}{T_1 - 2kQ_1}.$$
 [16]

- 6. (a) Derive steady flow energy equation and simplify the equation when applied to
 - i. Gas turbine
 - ii. Compressors

Set No. 2

(b) A fluid system under goes a non-flow frictionless process following the pressure volume relation as p=5/v+1.5 where p is in bar and v is in m^3 and the system rejects 42 kj of heat. Determine

- i. change in internal energy
- ii. change in enthalpy.

AC

Code No: 07A3EC08

- 7. (a) Describe the method of dehumidification by cooling and show it on psychrometric chart. Derive energy equation for this process.
 - (b) A thermally insulated vessel contains 3 kg mole of H_2 and 1.5 kg mole of N_2 each at 1 bar 27°C initially they are separated by a partition wall. Determine the change in entropy when the partition wall is removed and the two gases mixes. [8+8]
- 8. (a) What are the different types of thermodynamic systems? Explain with examples.
 - (b) Work done by a substance in a reversible non-flow manner is in accordance with $= \left(\frac{150}{p}\right) m^3$, where p is in bar. Evaluate the work done on or by the system as pressure increases from 10 to 100 bar. Indicate whether it is a compression or expansion process. [8+8]

R07

Set No. 4

II B.Tech I Semester Examinations, MAY 2011 THERMODYNAMICS

Common to Mechanical Engineering, Aeronautical Engineering, Automobile Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Describe the method of dehumidification by cooling and show it on psychrometric chart. Derive energy equation for this process.
 - (b) A thermally insulated vessel contains 3 kg mole of H_2 and 1.5 kg mole of N_2 each at 1 bar 27° C initially they are separated by a partition wall. Determine the change in entropy when the partition wall is removed and the two gases mixes. [8+8]
- 2. (a) Explain with neat sketch the working of vapour compression refrigeration cycle
 - (b) Describe a binary vapour cycle with the help of schematic diagram of the plant and T-S diagram of the cycle. [8+8]
- 3. (a) What are the different types of thermodynamic systems? Explain with examples.
 - (b) Work done by a substance in a reversible non-flow manner is in accordance with $=\left(\frac{150}{p}\right)m^3$, where p is in bar. Evaluate the work done on or by the system as pressure increases from 10 to 100 bar. Indicate whether it is a compression or expansion process. [8+8]
- 4. (a) What is an equation of state?
 - (b) Air at 16° C and 1.02 bar occupies a volume of $0.03 \ m^3$. The air is heated at constant volume until the pressure is 4.3 bar and then cooled at constant pressure back to the original temperature. calculate
 - i. The net heat flow to or from the air and
 - ii. The net entropy change.

[6+10]

- 5. (a) Derive steady flow energy equation and simplify the equation when applied to
 - i. Gas turbine
 - ii. Compressors
 - (b) A fluid system under goes a non-flow frictionless process following the pressure volume relation as p=5/v+1.5 where p is in bar and v is in m^3 and the system rejects 42 kj of heat. Determine
 - i. change in internal energy
 - ii. change in enthalpy.

Set No. 4

6. An engine working on Carnot cycle absorbs Q_1 units of heat from a source at T_1 and rejects Q_2 units of heat to a sink at T_2 . Te temperature of the working fluid is θ_1 and θ_2 , where $\theta_1 < T_1$ and $\theta_2 > T_2$,

If $\theta_1 = T_1$ -K Q_1 and $\theta_2 = T_2$ +k Q_2

Code No: 07A3EC08

where k is constant, then show that efficiency of the engine is given by:

$$\eta = 1 - \frac{T_2}{T_1 - 2kQ_1}.$$
 [16]

- 7. (a) What are the advantages associated with the diesel cycle as compared to the otto cycle?
 - (b) A gas engine working on Otto cycle has a cylinder of diameter 220 mm and stroke 300 mm. The clearance volume is 1800 cc. Find the air-standard efficiency. Assume $C_p = 1.004 \, \mathrm{kJ/kg.K}$ and $C_v = 0.718 \, \mathrm{kJ/kg.K}$ for air [6+10]
- 8. (a) Explain with a neat sketch P-V-T diagram.
 - (b) 2 kg of steam expands adiabatically from 20 bar, 300° C to 0.5 bar in a steam turbine such that the steam is dry and saturated at the end of expansion. Calculate
 - i. the work done by steam, and
 - ii. work lost due to irreversibility.

R07

Set No. 1

II B.Tech I Semester Examinations, MAY 2011 THERMODYNAMICS

Common to Mechanical Engineering, Aeronautical Engineering, Automobile Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Describe the method of dehumidification by cooling and show it on psychrometric chart. Derive energy equation for this process.
 - (b) A thermally insulated vessel contains 3 kg mole of H_2 and 1.5 kg mole of N_2 each at 1 bar 27° C initially they are separated by a partition wall. Determine the change in entropy when the partition wall is removed and the two gases mixes. [8+8]
- 2. An engine working on Carnot cycle absorbs Q_1 units of heat from a source at T_1 and rejects Q_2 units of heat to a sink at T_2 . Te temperature of the working fluid is θ_1 and θ_2 , where $\theta_1 < T_1$ and $\theta_2 > T_2$, If $\theta_1 = T_1$ -K Q_1 and $\theta_2 = T_2$ +k Q_2

where k is constant, then show that efficiency of the engine is given by:

 $\eta = 1 - \frac{T_2}{T_1 - 2kQ_1}. ag{16}$

- 3. (a) What are the advantages associated with the diesel cycle as compared to the otto cycle?
 - (b) A gas engine working on Otto cycle has a cylinder of diameter 220 mm and stroke 300 mm. The clearance volume is 1800 cc. Find the air-standard efficiency. Assume $C_p = 1.004 \, \text{kJ/kg.K}$ and $C_v = 0.718 \, \text{kJ/kg.K}$ for air. [6+10]
- 4. (a) Explain with neat sketch the working of vapour compression refrigeration cycle
 - (b) Describe a binary vapour cycle with the help of schematic diagram of the plant and T-S diagram of the cycle. [8+8]
- 5. (a) What are the different types of thermodynamic systems? Explain with examples.
 - (b) Work done by a substance in a reversible non-flow manner is in accordance with $= \left(\frac{150}{p}\right) m^3$, where p is in bar. Evaluate the work done on or by the system as pressure increases from 10 to 100 bar. Indicate whether it is a compression or expansion process. [8+8]
- 6. (a) What is an equation of state?
 - (b) Air at 16° C and 1.02 bar occupies a volume of $0.03 \ m^3$. The air is heated at constant volume until the pressure is 4.3 bar and then cooled at constant pressure back to the original temperature. calculate
 - i. The net heat flow to or from the air and

Set No. 1

ii. The net entropy change.

[6+10]

- 7. (a) Derive steady flow energy equation and simplify the equation when applied to
 - i. Gas turbine

Code No: 07A3EC08

- ii. Compressors
- (b) A fluid system under goes a non-flow frictionless process following the pressure volume relation as p=5/v+1.5 where p is in bar and v is in m^3 and the system rejects 42 kj of heat. Determine
 - i. change in internal energy
 - ii. change in enthalpy.

[8+8]

- 8. (a) Explain with a neat sketch P-V-T diagram.
 - (b) 2 kg of steam expands adiabatically from 20 bar, $300^{\circ}C$ to 0.5 bar in a steam turbine such that the steam is dry and saturated at the end of expansion. Calculate
 - i. the work done by steam, and
 - ii. work lost due to irreversibility

R07

Set No. 3

II B.Tech I Semester Examinations, MAY 2011 THERMODYNAMICS

Common to Mechanical Engineering, Aeronautical Engineering, Automobile Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) What are the different types of thermodynamic systems? Explain with examples.
 - (b) Work done by a substance in a reversible non-flow manner is in accordance with $=\left(\frac{150}{p}\right)m^3$, where p is in bar. Evaluate the work done on or by the system as pressure increases from 10 to 100 bar. Indicate whether it is a compression or expansion process. [8+8]
- 2. (a) What are the advantages associated with the diesel cycle as compared to the otto cycle?
 - (b) A gas engine working on Otto cycle has a cylinder of diameter 220 mm and stroke 300 mm. The clearance volume is 1800 cc. Find the air-standard efficiency. Assume $C_v = 1.004 \,\mathrm{kJ/kg.K}$ and $C_v = 0.718 \,\mathrm{kJ/kg.K}$ for air. [6+10]
- 3. (a) What is an equation of state?
 - (b) Air at 16° C and 1.02 bar occupies a volume of $0.03~m^3$. The air is heated at constant volume until the pressure is 4.3 bar and then cooled at constant pressure back to the original temperature. calculate
 - i. The net heat flow to or from the air and
 - ii. The net entropy change.

[6+10]

- 4. (a) Explain with a neat sketch P-V-T diagram.
 - (b) 2 kg of steam expands adiabatically from 20 bar, 300°C to 0.5 bar in a steam turbine such that the steam is dry and saturated at the end of expansion. Calculate
 - i. the work done by steam, and
 - ii. work lost due to irreversibility.

- 5. (a) Derive steady flow energy equation and simplify the equation when applied to
 - i. Gas turbine
 - ii. Compressors
 - (b) A fluid system under goes a non-flow frictionless process following the pressure volume relation as p=5/v+1.5 where p is in bar and v is in m^3 and the system rejects 42 kj of heat. Determine
 - i. change in internal energy

Set No. 3

ii. change in enthalpy.

Code No: 07A3EC08

[8+8]

- 6. (a) Explain with neat sketch the working of vapour compression refrigeration cycle
 - (b) Describe a binary vapour cycle with the help of schematic diagram of the plant and T-S diagram of the cycle. [8+8]
- 7. An engine working on Carnot cycle absorbs Q_1 units of heat from a source at T_1 and rejects Q_2 units of heat to a sink at T_2 . Te temperature of the working fluid is θ_1 and θ_2 , where $\theta_1 < T_1$ and $\theta_2 > T_2$, If $\theta_1 = T_1$ -K Q_1 and $\theta_2 = T_2$ +k Q_2

where k is constant, then show that efficiency of the engine is given by: $\eta = 1 - \frac{T_2}{T_1 - 2kQ_1}$. [16]

- 8. (a) Describe the method of dehumidification by cooling and show it on psychrometric chart. Derive energy equation for this process.
 - (b) A thermally insulated vessel contains 3 kg mole of H_2 and 1.5 kg mole of N_2 each at 1 bar 27^{0} C initially they are separated by a partition wall. Determine the change in entropy when the partition wall is removed and the two gases mixes. [8+8]

