II B.Tech I Semester Examinations,MAY 2011 PROBABILITY THEORY AND STOCHASTIC PROCESSES
 Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Consider a probability space $\mathrm{S}=(\Omega, \mathrm{F}, \mathrm{P})$. Let $\Omega=\{\xi 1 \ldots \xi 5\}=\{-1,-1 / 2,0$, $1 / 2,1\}$ with $\mathrm{P} \xi_{i}=1 / 5 \mathrm{i}=1 . .5$. Define two random variables on S as follows: $X(\xi)=\xi$ and $Y(\xi)=\xi^{2}$
i. Show that X and Y are dependent random variables
ii. Show that X and Y are uncorrelated.
(b) Let X and Y be independent random variables each $\mathrm{N}(0,1)$. Find the mean and variance of $\mathrm{Z}=\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}$.
[8+8]
2. (a) The PSD of random process is given by $S_{X X}(\omega)=\begin{array}{ll}\pi, & |\omega|<1 \\ 0, & \text { elsewhere }\end{array}$. Find its Auto correlation function.
(b) State and Prove any four properties of PSD.
[8+8]
3. (a) $\mathrm{Y}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots \ldots \ldots+\mathrm{X}_{N}$ is the sum of N statistically independent random variables X_{i} where $i=1,2 \ldots \ldots \ldots \ldots . N$. Prove that $\phi_{X_{1} \ldots \ldots X_{N}}\left(\omega_{1} \ldots \ldots \omega_{N}\right)=$ $\prod_{i=1}^{N} \phi X_{1}\left(\omega_{1}\right)$
(b) Discuss jointly Gaussian Random Variables.
4. (a) Explain about the poisson distribution function.
(b) The probability of a bad reaction from on injection is 0.001 . Determine the chanee that out of 2000 individuals more than two individuals will get a bad reaction.
5. (a) What is Bayes' theorem? Explain.
(b) Determine probabilities of system error and correct system transmission of symbols for an elementary binary communication system shown in figure 3b consisting of a transmitter that sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel occasionally causes errors to occur so that a ' 1 ' show up at the receiver as a ' 0 ?, and vice versa. Assume the symbols ' 1 ' and ' 0 ' are selected for a transmission as 0.6 and 0.4 respectively. [6+10]

Figure 3b
6. (a) State the auto correlation function of the random process $X(t)$ and Prove that $R_{\mathrm{XX}}(-\tau)=R_{X X}(\tau)$.
(b) State and prove the expression relating power and auto correlation function of random process.
7. (a) Define conditional distribution function, probability mass function, skew and variance of a random variable.
(b) If the number of items produced in a factory during a week is a random variable with mean 100 and variance 400 , compute an upper bound on the probability that this week?s production will be atleast 120 .
[8+8]
8. (a) Determine which of the following impulse response do not correspond to a system that is stable or realizable or both and state why:

$$
\begin{aligned}
& \text { i. } h(t)=u(t+3) \\
& \text { ii. } h(t)=u(t) \text { e-t } t^{2}
\end{aligned}
$$

iii. $h(t)=e^{+} \sin \left(\omega_{0} t\right), \omega_{0}$: real constant.
iv. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{e}^{-3 t}, \omega_{0}$: real constant
(b) A random process $\mathrm{X}(\mathrm{t})=\mathrm{A} \operatorname{Sin}\left(\omega_{0} \mathrm{t}+\theta\right)$ where $\mathrm{A} \& \omega_{0}$ are real positive constants \& θ is a random variable uniformly distributed in the internal ($\pi, \pi)$ is applied to the network shown in figure 5b. Find an expression for the networks response?

Figure 5b

II B.Tech I Semester Examinations,MAY 2011 PROBABILITY THEORY AND STOCHASTIC PROCESSES
 Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Define conditional distribution function, probability mass function, skew and variance of a random variable.
(b) If the number of items produced in a factory during a week is ar andon variable with mean 100 and variance 400, compute an upper bound on the probability that this week?s production will be atleast 120 .
2. (a) The PSD of random process is given by $S_{X X}(\omega)=\pi, \quad \mid \omega t<1$ Auto correlation function.
(b) State and Prove any four properties of PSD.
3. (a) State the auto correlation function of the random process $X(t)$ and Prove that $R_{X X}(-\tau)=R_{X X}(\tau)$.
(b) State and prove the expression relating power and auto correlation function of random process.
[8+8]
4. (a) $Y=X_{1}+X_{2}+\ldots \ldots .+X_{N}$ is the sum of N statistically independent random variables X_{i} where $\mathrm{i}=1,2 \ldots \ldots \ldots \ldots . \mathrm{N}$. Prove that $\phi_{X_{1} \ldots \ldots X_{N}}\left(\omega_{1} \ldots \ldots \omega_{N}\right)=$ $\prod_{i=1}^{N} \phi X_{x_{1}}\left(\omega_{1}\right)$
(b) Discuss jointly Gaussian Random Variables.
5. (a) Explain about the poisson distribution function.
(b) The probability of a bad reaction from on injection is 0.001 . Determine the chanee that out of 2000 individuals more than two individuals will get a bad reaction.
6. (a) Determine which of the following impulse response do not correspond to a system that is stable or realizable or both and state why:
i. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}+3)$
ii. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{e}-\mathrm{t}^{2}$
iii. $h(t)=e^{+} \sin \left(\omega_{0} t\right), \omega_{0}$: real constant.
iv. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{e}^{-3 t}, \omega_{0}$: real constant
(b) A random process $\mathrm{X}(\mathrm{t})=\mathrm{A} \operatorname{Sin}\left(\omega_{0} \mathrm{t}+\theta\right)$ where $\mathrm{A} \& \omega_{0}$ are real positive constants \& θ is a random variable uniformly distributed in the internal ($\pi, \pi)$ is applied to the network shown in figure 5 b. Find an expression for the networks response?

Figure 5b
7. (a) What is Bayes' theorem? Explain.
(b) Determine probabilities of system error and correct system transmission of symbols for an elementary binary communication system shown in figure 3b consisting of a transmitter that sends one of two possible symbols (al or a 0) over a channel to a receiver. The channel occasionally causes errors to occur so that a ' 1 ' show up at the receiver as a ' 0 ?, and vice versa. Assume the symbols ' 1 ' and ' 0 ' are selected for a transmission as 0.6 and 0.4 respectively. [6+10]

Figure 3b
8. (a) Consider a probability space $\mathrm{S}=(\Omega, \mathrm{F}, \mathrm{P})$. Let $\Omega=\{\xi 1 \ldots \xi 5\}=\{-1,-1 / 2,0$, $1 / 2,1$ f with $\mathrm{P} \xi_{i}=1 / 5 \mathrm{i}=1 . .5$. Define two random variables on S as follows: $X(\xi)=\xi$ and $\mathrm{Y}(\xi)=\xi^{2}$
i. Show that X and Y are dependent random variables
ii. Show that X and Y are uncorrelated.
(b) Let X and Y be independent random variables each $\mathrm{N}(0,1)$. Find the mean and variance of $\mathrm{Z}=\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}$.

II B.Tech I Semester Examinations,MAY 2011 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) State the auto correlation function of the random process $X(t)$ and Prove that $R_{X X}(-\tau)=R_{X X}(\tau)$.
(b) State and prove the expression relating power and auto correlation function of random process.
2. (a) Explain about the poisson distribution function.
(b) The probability of a bad reaction from on injection is 0.001 . Determine the chanee that out of 2000 individuals more than two individuals will get a bad reaction.

$$
[8+8]
$$

3. (a) What is Bayes' theorem? Explain
(b) Determine probabilities of system error and correct system transmission of symbols for an elementary binary communication system shown in figure 3b consisting of a fransmitter that sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel occasionally causes errors to occur so that a ' 1 ' show up at the receiver as a ' 0 ?, and vice versa. Assume the symbols ' 1 ' and ' 0 ' are selected for a transmission as 0.6 and 0.4 respectively. $[6+10]$

Figure 3b
4. (a) Consider a probability space $\mathrm{S}=(\Omega, \mathrm{F}, \mathrm{P})$. Let $\Omega=\{\xi 1 \ldots . \xi 5\}=\{-1,-1 / 2,0$, $1 / 2,1\}$ with $\mathrm{P} \xi_{i}=1 / 5 \mathrm{i}=1 . .5$. Define two random variables on S as follows: $X(\xi)=\xi$ and $Y(\xi)=\xi^{2}$
i. Show that X and Y are dependent random variables
ii. Show that X and Y are uncorrelated.
(b) Let X and Y be independent random variables each $\mathrm{N}(0,1)$. Find the mean and variance of $\mathrm{Z}=\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}$.
[8+8]
5. (a) Determine which of the following impulse response do not correspond to a system that is stable or realizable or both and state why:
i. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}+3)$
ii. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{e}-\mathrm{t}^{2}$
iii. $h(t)=e^{+} \sin \left(\omega_{0} t\right), \omega_{0}$: real constant.
iv. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{e}^{-3 t}, \omega_{0}$: real constant
(b) A random process $\mathrm{X}(\mathrm{t})=\mathrm{A} \operatorname{Sin}\left(\omega_{0} \mathrm{t}+\theta\right)$ where $\mathrm{A} \& \omega_{0}$ are real positive constants \& θ is a random variable uniformly distributed in the internal ($\pi, \pi)$ is applied to the network shown in figure 5 b. Find an expression for the networks response?
[8+8]

igure 5b
6. (a) Define conditional distribution function, probability mass function, skew and variance of a random variable.
(b) If the number of items produced in a factory during a week is a random variable with mean 100 and variance 400 , compute an upper bound on the probability that this week?s production will be atleast 120 .
[8+8]
7. (a) The PSD of random process is given by $S_{X X}(\omega)=\begin{array}{cc}\pi, & |\omega|<1 \\ 0, & \text { elsewhere }\end{array}$. Find its Auto correlation function.
(b) State and Prove any four properties of PSD.
8. (a) $\mathrm{Y}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots \ldots \ldots .+\mathrm{X}_{N}$ is the sum of N statistically independent random variables X_{i} where $\mathrm{i}=1,2 \ldots \ldots \ldots \ldots . \mathrm{N}$. Prove that $\phi_{X_{1} \ldots \ldots X_{N}}\left(\omega_{1} \ldots \ldots \omega_{N}\right)=$ $\prod_{i=1}^{N} \phi_{X_{1}}\left(\omega_{1}\right)$
(b) Discuss jointly Gaussian Random Variables.

II B.Tech I Semester Examinations,MAY 2011 PROBABILITY THEORY AND STOCHASTIC PROCESSES
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Define conditional distribution function, probability mass function, skew and variance of a random variable.
(b) If the number of items produced in a factory during a week is a random variable with mean 100 and variance 400, compute an upper bound on the probability that this week?s production will be atleast 120 . $[8+8]$
2. (a) Consider a probability space $\mathrm{S}=(\Omega, \mathrm{F}, \mathrm{P})$. Let $\Omega=\{\xi 1 \ldots \xi 5\}=\{-1,-1 / 2,0$, $1 / 2,1\}$ with $\mathrm{P} \xi_{i}=1 / 5 \mathrm{i}=1 . .5$. Define two random variables on S as follows: $X(\xi)=\xi$ and $\mathrm{Y}(\xi)=\xi^{2}$
i. Show that X and Y are dependent random variables
ii. Show that X and Y are uncorrelated.
(b) Let X and Y be independent random variables each $\mathrm{N}(0,1)$. Find the mean and variance of $Z=\left(X^{2}+Y^{2}\right)^{1 / 2}$.
3. (a) What is Bayes' theorem? Explain.
(b) Determine probabilities of system error and correct system transmission of symbols for an elementary binary communication system shown in figure 3b consisting of a transmitter that sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel occasionally causes errors to occur so that a ' 1 ' show up at the receiver as a ' 0 ?, and vice versa. Assume the symbols ' 1 ' and ' 0 ' are selected for a transmission as 0.6 and 0.4 respectively. [6+10]

Figure 3b
4. (a) Explain about the poisson distribution function.
(b) The probability of a bad reaction from on injection is 0.001 . Determine the chanee that out of 2000 individuals more than two individuals will get a bad reaction.
5. (a) Determine which of the following impulse response do not correspond to a system that is stable or realizable or both and state why:
i. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}+3)$
ii. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{e}-\mathrm{t}^{2}$
iii. $h(t)=e^{+} \sin \left(\omega_{0} t\right), \omega_{0}$: real constant.
iv. $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{e}^{-3 t}, \omega_{0}$: real constant
(b) A random process $\mathrm{X}(\mathrm{t})=\mathrm{A} \operatorname{Sin}\left(\omega_{0} \mathrm{t}+\theta\right)$ where $\mathrm{A} \& \omega_{0}$ are real positive constants \& θ is a random variable uniformly distributed in the internal ($\pi, \pi)$ is applied to the network shown in figure 5 b. Find an expression for the networks response?

6. (a) The PSD of random process is given by $S_{X X}(\omega)=\begin{array}{cc}\pi, & |\omega|<1 \\ 0, & \text { elsewhere }\end{array}$. Find its Auto correlation function.
(b) State and Prove any four properties of PSD.
7. (a) State the auto correlation function of the random process $X(t)$ and Prove that $R_{X X}(-\tau)=R_{X X}(\tau)$.
(b) State and prove the expression relating power and auto correlation function of random process.
8. (a) $\mathrm{Y}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots \ldots \ldots .+\mathrm{X}_{N}$ is the sum of N statistically independent random variables X_{i} where $\mathrm{i}=1,2 \ldots \ldots \ldots \ldots . \mathrm{N}$. Prove that $\phi_{X_{1} \ldots \ldots X_{N}}\left(\omega_{1} \ldots \ldots \omega_{N}\right)=$ $\prod_{i=1}^{N} \phi_{X_{1}}\left(\omega_{1}\right)$
(b) Discuss jointly Gaussian Random Variables.

