R07

Max Marks: 80

II B.Tech I Semester Examinations, MAY 2011 CONTROL SYSTEMS Instrumentation And Control Engineering

Time: 3 hours

Code No: 07A3EC23

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain the significance of generalized error series?
 - (b) For a system $G(s)H(s) = \frac{K}{s^2(s+2)(s+3)}$, Find the value of K to limit the steady state error to 10 when the input to the system is $r(t)=1+10t+40/2 t^2$ [6+10]
- 2. The characteristic equation of the system is given by $S^3 + 2S^2 + (K+1)S + 3K = 0$. Sketch the complete root locus? [16]
- 3. (a) What is compensation? What are the different types of compensators?
 - (b) What is a lead compensator, obtain the transfer function of lead compensator and draw pole-zero plot?
 - (c) Explain the different steps to be followed for the design of lead compensator using Bode plot? [3+3+10]

4. (a) Consider the vector matrix differential equation describe the dynamics of the system as $X = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$

Determine state transition matrix ?

- (b) What are the properties of state transistion matrix? [10+6]
- 5. (a) Determine the transfer function $\frac{C(s)}{R(s)}$ for the following block diagram (Figure 5

Figure 5

(b) Explain the following terms.

[10+6]

Code No: 07A3EC23

Set No. 2

[6+5+5]

- i. Input or source node
- ii. Path gain
- iii. Sink node
- iv. Feedback path
- 6. (a) Explain sensitivity?
 - (b) Determine the sensitivity of the closed loop system shown in figure 6 at $\omega=1~{\rm rad/sec}~{\rm w.r.t}$
 - i. forward path transfer function
 - ii. feedback path transfer function.

- 7. (a) What is "Nyquist Contour"?
 - (b) A system is given by $G(s) = \frac{4s+1}{s^2(s+1)(2s+1)}$ Sketch the Nyquist plot & hence determine the stability of the system. [2+14]
- 8. (a) Derive the expressions for resonant peak & resonant frequency and hence establish the correlation between time response & frequency response.
 - (b) Given $\zeta = 0.7$ & $\omega_n = 10$ r/s find resonant peak, resonant frequency & Bandwidth. [10+6]

R07

Max Marks: 80

[10+6]

II B.Tech I Semester Examinations, MAY 2011 CONTROL SYSTEMS Instrumentation And Control Engineering

Time: 3 hours

Code No: 07A3EC23

Answer any FIVE Questions All Questions carry equal marks ****

1. (a) Consider the vector matrix differential equation describe the dynamics of the system as $X = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$ Determine state transition matrix ?

(b) What are the properties of state transistion matrix?

- 2. (a) What is "Nyquist Contour"?
 - (b) A system is given by $G(s) = \frac{4s+1}{s^2(s+1)(2s+1)}$ Sketch the Nyquist plot & hence determine the stability of the system. [2+14]
- 3. (a) Explain the significance of generalized error series?
 - (b) For a system $G(s)H(s) = \frac{K}{s^2(s+2)(s+3)}$, Find the value of K to limit the steady state error to 10 when the input to the system is $r(t)=1+10t+40/2 t^2$. [6+10]
- 4. The characteristic equation of the system is given by $S^3 + 2S^2 + (K+1)S + 3K = 0$. Sketch the complete root locus? [16]
- 5. (a) Determine the transfer function $\frac{C(s)}{R(s)}$ for the following block diagram (Figure 5

Figure 5

(b) Explain the following terms.

i. Input or source node

[10+6]

Code No: 07A3EC23

- ii. Path gain
- iii. Sink node
- iv. Feedback path
- 6. (a) Explain sensitivity?
 - (b) Determine the sensitivity of the closed loop system shown in figure 6 at $\omega = 1$ rad/sec w.r.t

 $\mathbf{R07}$

- i. forward path transfer function
- ii. feedback path transfer function.

Set No. 4

[6+5+5]

- 7. (a) Derive the expressions for resonant peak & resonant frequency and hence establish the correlation between time response & frequency response.
 - (b) Given $\zeta = 0.7$ & $\omega_n = 10$ r/s find resonant peak, resonant frequency & Bandwidth. [10+6]
- 8. (a) What is compensation? What are the different types of compensators?
 - (b) What is a lead compensator, obtain the transfer function of lead compensator and draw pole-zero plot?
 - (c) Explain the different steps to be followed for the design of lead compensator using Bode plot? [3+3+10]

R07

Max Marks: 80

[10+6]

II B.Tech I Semester Examinations, MAY 2011 CONTROL SYSTEMS Instrumentation And Control Engineering

Time: 3 hours

Code No: 07A3EC23

Answer any FIVE Questions All Questions carry equal marks ****

1. (a) Consider the vector matrix differential equation describe the dynamics of the system as $X = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$ Determine state transition matrix ?

(b) What are the properties of state transistion matrix?

- 2. (a) Derive the expressions for resonant peak & resonant frequency and hence establish the correlation between time response & frequency response.
 - (b) Given $\zeta = 0.7$ & $\omega_n = 10$ r/s find resonant peak, resonant frequency & Bandwidth. [10+6]

3. (a) Explain sensitivity?

- (b) Determine the sensitivity of the closed loop system shown in figure 3 at $\omega=1~{\rm rad/sec}$ w.r.t
 - i. forward path transfer function
 - ii. feedback path transfer function. [6+5+5]

Figure 3

- 4. The characteristic equation of the system is given by $S^3 + 2S^2 + (K+1)S + 3K = 0$. Sketch the complete root locus? [16]
- 5. (a) Explain the significance of generalized error series?
 - (b) For a system $G(s)H(s) = \frac{K}{s^2(s+2)(s+3)}$. Find the value of K to limit the steady state error to 10 when the input to the system is $r(t)=1+10t+40/2 t^2$.[6+10]

Code No: 07A3E

6. (a) Determine the transfer function $\frac{C(s)}{R(s)}$ for the following block diagram (Figure 6

Figure 6

(b) Explain the following terms.

[10+6]

- i. Input or source node
- ii. Path gain
- iii. Sink node
- iv. Feedback path
- 7. (a) What is "Nyquist Contour"?
 - (b) A system is given by $G(s) = \frac{4s+1}{s^2(s+1)(2s+1)}$ Sketch the Nyquist plot & hence determine the stability of the system. [2+14]
- 8. (a) What is compensation? What are the different types of compensators?
 - (b) What is a lead compensator, obtain the transfer function of lead compensator and draw pole-zero plot?
 - (c) Explain the different steps to be followed for the design of lead compensator using Bode plot? [3+3+10]

R07

Max Marks: 80

II B.Tech I Semester Examinations, MAY 2011 CONTROL SYSTEMS Instrumentation And Control Engineering

Time: 3 hours

Code No: 07A3EC23

Answer any FIVE Questions All Questions carry equal marks ****

- 1. The characteristic equation of the system is given by $S^3 + 2S^2 + (K+1)S + 3K = 0$. Sketch the complete root locus? [16]
- 2. (a) Explain sensitivity?
 - (b) Determine the sensitivity of the closed loop system shown in figure 2 at $\omega = 1$ rad/sec w.r.t
 - i. forward path transfer function
 - ii. feedback path transfer function.

[6+5+5]

Figure 2

- 3. (a) What is compensation? What are the different types of compensators?
 - (b) What is a lead compensator, obtain the transfer function of lead compensator and draw pole-zero plot?
 - (c) Explain the different steps to be followed for the design of lead compensator using Bode plot? [3+3+10]
- 4. (a) Explain the significance of generalized error series?
 - (b) For a system $G(s)H(s) = \frac{K}{s^2(s+2)(s+3)}$. Find the value of K to limit the steady state error to 10 when the input to the system is $r(t)=1+10t+40/2 t^2$.[6+10]
- 5. (a) Consider the vector matrix differential equation describe the dynamics of the system as $X = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$. Determine state transition matrix 2

Determine state transition matrix ?

(b) What are the properties of state transistion matrix? [10+6]

www.firstranker.com

R07

Set No. 3

[10+6]

- 6. (a) Derive the expressions for resonant peak & resonant frequency and hence establish the correlation between time response & frequency response.
 - (b) Given $\zeta = 0.7$ & $\omega_n = 10$ r/s find resonant peak, resonant frequency & Bandwidth. [10+6]
- 7. (a) What is "Nyquist Contour"?

Code No: 07A3EC23

- (b) A system is given by $G(s) = \frac{4s+1}{s^2(s+1)(2s+1)}$ Sketch the Nyquist plot & hence determine the stability of the system. [2+14]
- 8. (a) Determine the transfer function $\frac{C(s)}{R(s)}$ for the following block diagram (Figure 8)

- (b) Explain the following terms.
 - i. Input or source node
 - ii. Path gain
 - iii. Sink node
 - iv. Feedback path
