II B.Tech II Semester Examinations,APRIL 2011
 STRENGTH OF MATERIALS - II
 Civil Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Calculate the safe compressive load on an hollow C.I. column(one end rigidy fixed and other end hinged) of 15 cm external dia, 10 cms internal dia. and 8 m in length. Use Euler's formula with a factor of safety of 5 and $\mathrm{E}=100 \mathrm{kN} / \mathrm{mm}^{2}$.
2. A semi circular beam is supported on three equally spaced columns. Derive expressions for Max B.M and Max Twisting Moment by deriving the general expressions.
3. In an experimental determination of the buckling load for a 12 mm dia mild steel pin ended struts of various lengths, two of the values obtained were
(a) When length is 50 cms load is 10 KN and
(b) When length is 20 cms load is 30 KN .

Make necessary calculations and state whether either of the values of the loads, confirm with Euler's formula for the critical load. Take $\mathrm{E}=2 \times 10^{4} \mathrm{KN} / \mathrm{cm}^{2}$. [16]
4. A railway wagon haying a mass of 6000 Kg . and moving with a speed of 12 Kmph . has to be topped by four buffer springs in which the maximum compression allowed is 20 cm . Calculate the number of turns in each spring when the dia of the wire is 3 cm . and the mean dia of coil is 15 cm .
Take C $=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
5. A square pin is required to resist a pull of 40 KN and a shear force of 15 KN Derive a Suitable section according to strain energy theory. Maximum elastic stress in tension is $350 \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio is 0.3. Adopt a factor of safety of 2.5. [16]
6. A hollow rectangular column of external depth 1 m and external width 1.0 m is 10 cm thick. Calculate the maximum and minimum stress in the section of the column if a vertical load of 200 KN is acting with an eccentricity of 20 cm . [16]
7. A cantilever truss is loaded as shown in figure 3. By method of joints analyze the truss.

Set No. 2

Figure 3
8. Determine Iuu and Ivv graphically by using Mohr-cirelemethod for an angle section $225 \times 175 \times 15 \mathrm{~mm}$.

1. Determine Iuu and Ivv graphically by using Mohr-circle method for an angle section $225 \times 175 \times 15 \mathrm{~mm}$.
2. Calculate the safe compressive load on an hollow C.I. column(oneend rigidy fixed and other end hinged) of 15 cm external dia, 10 cms internal dia. and 8 m in length. Use Euler's formula with a factor of safety of 5 and $\mathrm{E}=100 \mathrm{kN} / \mathrm{mm}^{2}$.
3. A square pin is required to resist a pull of 40 KN and a shear force of 15 KN Derive a Suitable section according to strain energy theory. Maximum elastic stress in tension is $350 \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio is 0.3 . Adopt a factor of safety of 2.5. [16]
4. A railway wagon having a mass of 6000 Kg . and moving with a speed of 12 Kmph . has to be stopped by four buffer springs in which the maximum compression allowed is 20 cm . Calculate the number of turns in each spring when the dia of the wire is 3 cm . and the mean dia of coil is 1.5 cm .
Take $\mathrm{C}=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
5. A hollow rectangular colvm of external depth 1 m and external width 1.0 m is 10 cm thick. Calculate the maximum and minimum stress in the section of the column if a verticalload of 200 KN is acting with an eccentricity of 20 cm . [16]
6. A cantilever truss is loaded as shown in figure 3. By method of joints analyze the truss.

Figure 3
7. A semi circular beam is supported on three equally spaced columns. Derive expressions for Max B.M and Max Twisting Moment by deriving the general expressions.
8. In an experimental determination of the buckling load for a 12 mm dia mild steel pin ended struts of various lengths, two of the values obtained were
(a) When length is 50 cms load is 10 KN and
(b) When length is 20 cms load is 30 KN .

Make necessary calculations and state whether either of the values of the loads, confirm with Euler's formula for the critical load. Take $\mathrm{E}=2 \times 10^{4} \mathrm{KA} / \mathrm{cm}^{2}$. [16]

STRENGTH OF MATERIALS - II
 Civil Engineering

Max Marks: 80
Time: 3 hours

1. Calculate the safe compressive load on an hollow C.I. column(one end rigidy fixed and other end hinged) of 15 cm external dia, 10 cms internal dia. and 8 m in length. Use Euler's formula with a factor of safety of 5 and $\mathrm{E}=100 \mathrm{kN} / \mathrm{mm}^{2}$.
2. In an experimental determination of the buckling load for a 12 mm , dia mild steel pin ended struts of various lengths, two of the values obtained were
(a) When length is 50 cms load is 10 KN and
(b) When length is 20 cms load is 30 KN .

Make necessary calculations and state whether either of the values of the loads, confirm with Euler's formula for the critical load. Take $\mathrm{E}=2 \times 10^{4} \mathrm{KN} / \mathrm{cm}^{2}$. [16]
3. A square pin is required to resist a pull of 40 KN and a shear force of 15 KN Derive a Suitable section according to strain energy theory. Maximum elastic stress in tension is $350 \mathrm{~N} / \mathrm{mm}^{2}$ Poisson's ratio is 0.3 . Adopt a factor of safety of 2.5. [16]
4. A cantilever truss is loaded as shown in figure 3. By method of joints analyze the truss.

Figure 3
5. Determine Iuu and Ivv graphically by using Mohr-circle method for an angle section $225 \times 175 \times 15 \mathrm{~mm}$.
6. A semi circular beam is supported on three equally spaced columns. Derive expressions for Max B.M and Max Twisting Moment by deriving the general expressions.
7. A railway wagon having a mass of 6000 Kg . and moving with a speed of 12 Kmph . has to be stopped by four buffer springs in which the maximum compression allowed is 20 cm .Calculate the number of turns in each spring when the dia of the wire is 3 cm . and the mean dia of coil is 15 cm .
Take C $=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
[16]
8. A hollow rectangular column of external depth 1 m and external width 1.0 m is 10 cm thick. Calculate the maximum and minimum stress in the section of the column if a vertical load of 200 KN is acting with an eccentricity of 20 cm .
[16]

1. A railway wagon having a mass of 6000 Kg . and moving with a speed of 12 Kmph . has to be stopped by four buffer springs in which the maximum compression allowed is 20 cm . Calculate the number of turns in each spring when the dia of the wire is 3 cm . and the mean dia of coil is 15 cm .
Take C $=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
[16]
2. Determine Iuu and Ivv graphically by using Mohr-circle method for an angle section $225 \times 175 \times 15 \mathrm{~mm}$.
3. A cantilever truss is loaded as shown in figure 3. By method of joints analyze the truss.

Figure 3
4. Calculate the safe compressive load on an hollow C.I. column(one end rigidy fixed and other end hinged) of 15 cm external dia, 10 cms internal dia. and 8 m in length. Use Euler's formula with a factor of safety of 5 and $\mathrm{E}=100 \mathrm{kN} / \mathrm{mm}^{2}$.
[16]
5. A semi circular beam is supported on three equally spaced columns. Derive expressions for Max B.M and Max Twisting Moment by deriving the general expressions.
6. In an experimental determination of the buckling load for a 12 mm dia mild steel pin ended struts of various lengths, two of the values obtained were
(a) When length is 50 cms load is 10 KN and
(b) When length is 20 cms load is 30 KN .

Make necessary calculations and state whether either of the values of the loads, confirm with Euler's formula for the critical load. Take $\mathrm{E}=2 \times 10^{4} \mathrm{KN} / \mathrm{cm}^{2}$. [16]
7. A square pin is required to resist a pull of 40 KN and a shear force of 15 KN Derive a Suitable section according to strain energy theory. Maximum elastic stress in tension is $350 \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio is 0.3 . Adopt a factor of safety of 2.5. [16]
8. A hollow rectangular column of external depth 1 m and external width 1.0 m is 10 cm thick. Calculate the maximum and minimum stress in the section of the column if a vertical load of 200 KN is acting with an eccentricity of 20 em . [16]

