R07

Set No. 2

[8+8]

II B.Tech II Semester Examinations, APRIL 2011 PROCESS HEAT TRANSFER Chemical Engineering

Time: 3 hours

Code No: 07A40801

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) What are the advantages and disadvantages of more number of passes on tube

side and shell side of shell and tube heat - exchanger.

(b) Find out the length of the tube required for the following heat transfer where air is heated by exhaust gases.

- Q (heat transfer/hr) = 8000 Kcal. Inside (D_i) and outside diameter (D_o) of tube are 5 cm and 6 cm respectively. H_i (Inside heat transfer coefficient Air side) = 100 Kcal/m²hr ⁰C h_o (out heat transfer coefficient gas side) = 160 Kcal/m²hr ⁰C T_{hi} = 400 ^oC T_{ho} = 150 ^oC T_{ci} = 50 ^oC T_{co} = 100 ^oC Neglect the tube resistance and assume flow arrangement is parallel. If the flow is made counter current then what is the percentage saving in the tube length.
- 2. (a) Discuss the regimes of boiling heat transfer with the help of a boiling curve. Why is heat transfer coefficients lowered in film boiling as compared to nucleate boiling?
 - (b) What are the types of condensation? Which type is advantageous. [11+5]
- 3. A horizontal cylinder 0.025m diameter and 0.5m long is suspended in water at 20 0 C. Calculate the rate of heat transfer if the cylinder surface is at 60 0 C. Use the following correlation. Nu = 0.53 (Gr Pr)^{0.25}. Physical properties of water at the mean film temperature are : K = 0.63 w/m 0 K; Viscosity = 2.35kg/m.h; Density = 992 kg/m³; Pr = 4.3. [16]
- 4. Liquid Benzene at 75°C is to be cooled to 40°C. Flow rate of Benzene is 1.45kg/sec while the cooling water flow rate is 0.95kg/sec. cooling water is circulating through the tubes at a temperature of 15°C. Calculate the heat transfer area required for
 - (a) single pass co-current and counter current flow H.E
 - (b) Multipass shell and tube heat exchanger. Data available; specific heat of Benzene = 1760J/kgk specific heat of water = 4180J/kg^ok LMTD correction factor = 0.94.
- 5. (a) Derive an expression for steady state conduction through a wall of hollow sphere of inner radius r_1 and outer radius r_0 , thermal conductivity 'k' the inside and outside surfaces of the wall are at constant temperatures T_1 and T_2 . show that the mean area employ in the equation is equal to $\sqrt{A_1A_0}$
 - (b) A copper plate (k=372 w/m⁰C) is 3mm thick. It is protected from corrosion by 2mm thick layer of stainless steel (k=17w/m⁰C) on both the sides. The temperatures of the two outer surfaces of steel are 400^oC and 100^oC. calculate the temperature at the two interfaces. [8+8]

R07

Set No. 2

- 6. A single effect evaporator is to concentrate 9070 kg/hr of a 20% solution of NaOH to 60% solids. The gauge pressure of the steam is 1.5 kgf/cm². The absolute pressure in the vapour space is 100mm Hg. The feed temperature is 38° C and the overall heat transfer coefficient is 1220 Kcal/m² hr ^oC (1420W/m⁰2 K). Calculate the steam consumption, economy and the heating surface required. DATA: Boiling point of water at 100mm Hg = 51° C Boiling point elevation = 56° C Enthalpy of feed at 38° C = 30.6 Kcal/Kg Enthalpy of Thick Liquor = 156 Kcal/Kg. [16]
- 7. A gas at -15 0 C flows over a flat plate maintained at 5 0 C. Free stream velocity of gas is 12.5m/s. The length of the plate is 3.8m. Calculate the average value of heat transfer coefficient with and without accounting for the laminar boundary layer. Properties of gas: Density = 1.247 kg/m³; Specific heat = 1005 J/kg 0 K; thermal conductivity = 0.0251 w/ m 0 K. Viscosity = 1.76 × 10⁻⁵ N-s/m². [16]
- 8. Two large parallel planes having emissivitys of 0.4 and 0.6 are maintained at temperatures of 820K and 420K, respectively. A radiation shield having an emissivity of 0.06 on both sides is placed between the two planes. Calculate.
 - (a) the heat- transfer rate per unit area if the shield were not present
 - (b) the heat transfer rate per unit area with the shield present. [16]

R07

Set No. 4

II B.Tech II Semester Examinations, APRIL 2011 PROCESS HEAT TRANSFER **Chemical Engineering**

Time: 3 hours

Code No: 07A40801

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Liquid Benzene at 75° C is to be cooled to 40° C. Flow rate of Benzene is 1.45kg/sec while the cooling water flow rate is 0.95kg/sec. cooling water is circulating through the tubes at a temperature of 15^{0} C. Calculate the heat transfer area required for
 - (a) single pass co-current and counter current flow H.E
 - (b) Multipass shell and tube heat exchanger. Data available; specific heat of Benzene = 1760 J/kgkspecific heat of water = $4180 \text{J/kg}^{\circ}\text{k}$ LMTD correction factor = 0.94.
- (a) What are the advantages and disadvantages of more number of passes on tube 2. side and shell side of shell and tube heat - exchanger.

(b)	Find out the length of the tube required for the following heat transfer where air is heated by exhaust	gases.
	Q (heat transfer/hr) = 8000 Kcal.	
	Inside (D_i) and outside diameter (D_o) of tube are 5 cm and 6 cm respectively.	
	H_i (Inside heat transfer coefficient Air side) = 100 Kcal/m ² hr ⁰ C	
	h_0 (out heat transfer coefficient gas side) = 160 Kcal/m ² hr ⁰ C	
	$T_{hi} = 400 \ {}^{0}C \ T_{ho} = 150 \ {}^{0}C \ T_{ci} = 50 \ {}^{0}C \ T_{co} = 100 \ {}^{0}C$	[0 0]
	Neglect the tube resistance and assume flow arrangement is parallel.	[0+0]
	If the flow is made counter current then what is the percentage saving in the tube length.	

- (a) Discuss the regimes of boiling heat transfer with the help of a boiling curve. 3. Why is heat transfer coefficients lowered in film boiling as compared to nucleate boiling?
 - (b) What are the types of condensation? Which type is advantageous. [11+5]
- 4. A single effect evaporator is to concentrate 9070 kg/hr of a 20% solution of NaOH to 60% solids. The gauge pressure of the steam is 1.5 kgf/cm^2 . The absolute pressure in the vapour space is 100mm Hg. The feed temperature is 38^oC and the overall heat transfer coefficient is 1220 Kcal/m² hr ${}^{0}C$ (1420W/m⁰2 K). Calculate the steam consumption, economy and the heating surface required. DATA: Boiling point of water at 100mm Hg = 51° C Boiling point elevation $= 56^{\circ}C$ Enthalpy of feed at $38^{\circ}C = 30.6$ Kcal/Kg Enthalpy of Thick Liquor = 156 Kcal/Kg. [16]
- 5. (a) Derive an expression for steady state conduction through a wall of hollow sphere of inner radius r_1 and outer radius r_0 , thermal conductivity 'k' the inside and outside surfaces of the wall are at constant temperatures T_1 and T₂. show that the mean area employ in the equation is equal to $\sqrt{A_1A_0}$
 - (b) A copper plate ($k=372 \text{ w/m}^{\circ}\text{C}$) is 3mm thick. It is protected from corrosion by 2mm thick layer of stainless steel $(k=17w/m^0C)$ on both the sides. The

R07

Set No. 4

temperatures of the two outer surfaces of steel are 400° C and 100° C. calculate the temperature at the two interfaces. [8+8]

- 6. A horizontal cylinder 0.025m diameter and 0.5m long is suspended in water at 20 0 C. Calculate the rate of heat transfer if the cylinder surface is at 60 0 C. Use the following correlation. Nu = 0.53 (Gr Pr)^{0.25}. Physical properties of water at the mean film temperature are : K = 0.63 w/m 0 K; Viscosity = 2.35kg/m.h; Density = 992 kg/m³; Pr = 4.3. [16]
- 7. Two large parallel planes having emissivitys of 0.4 and 0.6 are maintained at temperatures of 820K and 420K, respectively. A radiation shield having an emissivity of 0.06 on both sides is placed between the two planes. Calculate.
 - (a) the heat- transfer rate per unit area if the shield were not present

Ri

- (b) the heat transfer rate per unit area with the shield present. [16]
- 8. A gas at -15 0 C flows over a flat plate maintained at 5 0 C. Free stream velocity of gas is 12.5m/s. The length of the plate is 3.8m. Calculate the average value of heat transfer coefficient with and without accounting for the laminar boundary layer. Properties of gas: Density = 1.247 kg/m³; Specific heat = 1005 J/kg 0 K; thermal conductivity = 0.0251 w/ m 0 K. Viscosity = 1.76 × 10⁻⁵ N-s/m². [16]

R07

Set No. 1

II B.Tech II Semester Examinations, APRIL 2011 PROCESS HEAT TRANSFER Chemical Engineering

Time: 3 hours

Code No: 07A40801

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. A horizontal cylinder 0.025m diameter and 0.5m long is suspended in water at 20 0 C. Calculate the rate of heat transfer if the cylinder surface is at 60 0 C. Use the following correlation. Nu = 0.53 (Gr Pr)^{0.25}. Physical properties of water at the mean film temperature are : K = 0.63 w/m 0 K; Viscosity = 2.35kg/m.h; Density = 992 kg/m³; Pr = 4.3. [16]
- 2. Liquid Benzene at 75°C is to be cooled to 40°C. Flow rate of Benzene is 1.45kg/sec while the cooling water flow rate is 0.95kg/sec. cooling water is circulating through the tubes at a temperature of 15°C. Calculate the heat transfer area required for
 - (a) single pass co-current and counter current flow H.E
 - (b) Multipass shell and tube heat exchanger. Data available; specific heat of Benzene = 1760J/kgk specific heat of water = 4180J/kg°k LMTD correction factor = 0.94.
- 3. A single effect evaporator is to concentrate 9070 kg/hr of a 20% solution of NaOH to 60% solids. The gauge pressure of the steam is 1.5 kgf/cm². The absolute pressure in the vapour space is 100mm Hg. The feed temperature is 38° C and the overall heat transfer coefficient is 1220 Kcal/m² hr ^oC (1420W/m⁰2 K). Calculate the steam consumption, economy and the heating surface required. DATA: Boiling point of water at 100mm Hg = 51° C Boiling point elevation = 56° C Enthalpy of feed at 38° C = 30.6 Kcal/Kg Enthalpy of Thick Liquor = 156 Kcal/Kg. [16]
- 4. (a) Discuss the regimes of boiling heat transfer with the help of a boiling curve. Why is heat transfer coefficients lowered in film boiling as compared to nucleate boiling?
 - (b) What are the types of condensation? Which type is advantageous. [11+5]
- 5. Two large parallel planes having emissivitys of 0.4 and 0.6 are maintained at temperatures of 820K and 420K, respectively. A radiation shield having an emissivity of 0.06 on both sides is placed between the two planes. Calculate.
 - (a) the heat- transfer rate per unit area if the shield were not present
 - (b) the heat transfer rate per unit area with the shield present. [16]

R07

Set No. 1

6. (a) What are the advantages and disadvantages of more number of passes on tube side and shell side of shell and tube heat - exchanger.

(b) Find out the length of the tube required for the following heat transfer where air is heated by exhaust gases. Q (heat transfer/hr) = 8000 Kcal. Inside (D_i) and outside diameter (D_o) of tube are 5 cm and 6 cm respectively. H_i (Inside heat transfer coefficient Air side) = 100 Kcal/m²hr ⁰C h_o (out heat transfer coefficient gas side) = 160 Kcal/m²hr ⁰C T_{hi} = 400 ⁰C T_{ho} = 150 ^oC T_{ci} = 50 ^oC T_{co} = 100 ^oC Neglect the tube resistance and assume flow arrangement is parallel. [8+8]

- If the flow is made counter current then what is the percentage saving in the tube length.
 7. (a) Derive an expression for steady state conduction through a wall of hollow sphere of inner radius r₁ and outer radius r₀, thermal conductivity 'k' the inside and outside surfaces of the wall are at constant temperatures T₁ and T₂. show that the mean area employ in the equation is equal to A₁A₀
 - (b) A copper plate (k=372 w/m⁰C) is 3mm thick. It is protected from corrosion by 2mm thick layer of stainless steel (k=17w/m⁰C) on both the sides. The temperatures of the two outer surfaces of steel are 400° C and 100° C. calculate the temperature at the two interfaces. [8+8]
- 8. A gas at -15 0 C flows over a flat plate maintained at 5 0 C. Free stream velocity of gas is 12.5m/s. The length of the plate is 3.8m. Calculate the average value of heat transfer coefficient with and without accounting for the laminar boundary layer. Properties of gas: Density = 1.247 kg/m³; Specific heat = 1005 J/kg 0 K; thermal conductivity = 0.0251 w/ m 0 K. Viscosity = 1.76 × 10⁻⁵ N-s/m². [16]

R07

Set No. 3

II B.Tech II Semester Examinations, APRIL 2011 PROCESS HEAT TRANSFER Chemical Engineering

Time: 3 hours

Code No: 07A40801

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Two large parallel planes having emissivitys of 0.4 and 0.6 are maintained at temperatures of 820K and 420K, respectively. A radiation shield having an emissivity of 0.06 on both sides is placed between the two planes. Calculate.
 - (a) the heat- transfer rate per unit area if the shield were not present
 - (b) the heat transfer rate per unit area with the shield present. [16]
- 2. (a) What are the advantages and disadvantages of more number of passes on tube side and shell side of shell and tube heat exchanger.
 - (b) Find out the length of the tube required for the following heat transfer where air is heated by exhaust gases. Q (heat transfer/hr) = 8000 Kcal. Inside (D_i) and outside diameter (D_o) of tube are 5 cm and 6 cm respectively. H_i (Inside heat transfer coefficient Air side) = 100 Kcal/m²hr ⁹C h_o (out heat transfer coefficient gas side) = 160 Kcal/m²hr ⁹C T_{hi} = 400 ^oC T_{ho} = 150 ^oC T_{ci} = 50 ^oC T_{co} = 100 ^oC Neglect the tube resistance and assume flow arrangement is parallel. If the flow is made counter current then what is the percentage saving in the tube length. [8+8]
- 3. Liquid Benzene at 75°C is to be cooled to 40°C. Flow rate of Benzene is 1.45kg/sec while the cooling water flow rate is 0.95kg/sec. cooling water is circulating through the tubes at a temperature of 15°C. Calculate the heat transfer area required for
 - (a) single pass co-current and counter current flow H.E
 - (b) Multipass shell and tube heat exchanger. Data available; specific heat of Benzene = 1760J/kgk specific heat of water = 4180J/kg^ok LMTD correction factor = 0.94.
- 4. (a) Discuss the regimes of boiling heat transfer with the help of a boiling curve. Why is heat transfer coefficients lowered in film boiling as compared to nucleate boiling?
 - (b) What are the types of condensation? Which type is advantageous. [11+5]
- 5. (a) Derive an expression for steady state conduction through a wall of hollow sphere of inner radius r_1 and outer radius r_0 , thermal conductivity 'k' the inside and outside surfaces of the wall are at constant temperatures T_1 and T_2 . show that the mean area employ in the equation is equal to $\sqrt{A_1A_0}$
 - (b) A copper plate (k=372 w/m⁰C) is 3mm thick. It is protected from corrosion by 2mm thick layer of stainless steel (k=17w/m⁰C) on both the sides. The temperatures of the two outer surfaces of steel are 400⁰C and 100⁰C. calculate the temperature at the two interfaces. [8+8]

R07

Set No. 3

- 6. A single effect evaporator is to concentrate 9070 kg/hr of a 20% solution of NaOH to 60% solids. The gauge pressure of the steam is 1.5 kgf/cm². The absolute pressure in the vapour space is 100mm Hg. The feed temperature is 38° C and the overall heat transfer coefficient is 1220 Kcal/m² hr ^oC (1420W/m⁰2 K). Calculate the steam consumption, economy and the heating surface required. DATA: Boiling point of water at 100mm Hg = 51° C Boiling point elevation = 56° C Enthalpy of feed at 38° C = 30.6 Kcal/Kg Enthalpy of Thick Liquor = 156 Kcal/Kg. [16]
- 7. A gas at -15 0 C flows over a flat plate maintained at 5 0 C. Free stream velocity of gas is 12.5m/s. The length of the plate is 3.8m. Calculate the average value of heat transfer coefficient with and without accounting for the laminar boundary layer. Properties of gas: Density = 1.247 kg/m³; Specific heat = 1005 J/kg 0 K; thermal conductivity = 0.0251 w/ m 0 K. Viscosity = 1.76 × 10⁻⁵ N-s/m². [16]
- 8. A horizontal cylinder 0.025m diameter and 0.5m long is suspended in water at 20 0 C. Calculate the rate of heat transfer if the cylinder surface is at 60 0 C. Use the following correlation. Nu = 0.53 (Gr Pr)^{0.25}. Physical properties of water at the mean film temperature are : K = 0.63 w/m 0 K; Viscosity = 2.35kg/m.h; Density = 992 kg/m³; Pr = 4.3. [16]