II B.Tech II Semester Examinations,APRIL 2011
 PROCESS HEAT TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) What are the advantages and disadvantages of more number of passes on tube side and shell side of shell and tube heat - exchanger.
(b) Find out the length of the tube required for the following heat transfer where air is heated by exhaust gases. Q (heat transfer/hr) $=8000 \mathrm{Kcal}$. Inside $\left(D_{i}\right)$ and outside diameter $\left(D_{o}\right)$ of tube are 5 cm and 6 cm respectively. $\mathrm{H}_{\mathrm{i}}($ Inside heat transfer coefficient Air side $)=100 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}$ h_{o} (out heat transfer coefficient gas side) $=160 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}$ $\mathrm{T}_{\mathrm{hi}}=400^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{ho}}=150{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{ci}}=50{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{co}}=100^{\circ} \mathrm{C}$ Neglect the tube resistance and assume flow arrangement is parallel.
2. (a) Discuss the regimes of boiling heat transfer with the help of a boiling curve. Why is heat transfer coefficients lowered in film boiling as compared to nucleate boiling?
(b) What are the types of condensation? Which type is advantageous. $[11+5]$
3. A horizontal cylinder 0.025 m diameter and 0.5 m long is suspended in water at 20 ${ }^{0} \mathrm{C}$. Calculate the rate of heat transfer if the cylinder surface is at $60{ }^{\circ} \mathrm{C}$. Use the following correlation. $\mathrm{Nu}_{1}=0.53(\mathrm{Gr} \operatorname{Pr})^{0.25}$. Physical properties of water at the mean film temperature are : $\mathbb{K}=0.63 \mathrm{w} / \mathrm{m}{ }^{0} \mathrm{~K} ;$ Viscosity $=2.35 \mathrm{~kg} / \mathrm{m} . \mathrm{h}$; Density $=992 \mathrm{~kg} / \mathrm{m}^{3} ; \operatorname{Pr}=4.3$.
4. Liquid Benzene at $75^{\circ} \mathrm{C}$ is to be cooled to $40^{\circ} \mathrm{C}$. Flow rate of Benzene is $1.45 \mathrm{~kg} / \mathrm{sec}$ while the cooling water flow rate is $0.95 \mathrm{~kg} / \mathrm{sec}$. cooling water is circulating through the tubes at a temperature of $15^{\circ} \mathrm{C}$. Calculate the heat transfer area required for
(a) single pass co-current and counter current flow H.E
(b) Multipass shell and tube heat exchanger.

Data available; specific heat of Benzene $=1760 \mathrm{~J} / \mathrm{kgk}$
specific heat of water $=4180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{k}$
LMTD correction factor $=0.94$.
5. (a) Derive an expression for steady state conduction through a wall of hollow sphere of inner radius r_{1} and outer radius r_{0}, thermal conductivity ' k ' the inside and outside surfaces of the wall are at constant temperatures T_{1} and T_{2}. show that the mean area employ in the equation is equal to $\sqrt{A_{1} A_{0}}$
(b) A copper plate $\left(\mathrm{k}=372 \mathrm{w} / \mathrm{m}^{0} \mathrm{C}\right)$ is 3 mm thick. It is protected from corrosion by 2 mm thick layer of stainless steel $\left(\mathrm{k}=17 \mathrm{w} / \mathrm{m}^{0} \mathrm{C}\right)$ on both the sides. The temperatures of the two outer surfaces of steel are $400^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. calculate the temperature at the two interfaces.
6. A single effect evaporator is to concentrate $9070 \mathrm{~kg} / \mathrm{hr}$ of a 20% solution of NaOH to 60% solids. The gauge pressure of the steam is $1.5 \mathrm{kgf} / \mathrm{cm}^{2}$. The absolute pressure in the vapour space is 100 mm Hg . The feed temperature is $38^{\circ} \mathrm{C}$ and the overall heat transfer coefficient is $1220 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}\left(1420 \mathrm{~W} / \mathrm{m}^{0} 2 \mathrm{~K}\right)$. Calculate the steam consumption, economy and the heating surface required.
DATA: Boiling point of water at $100 \mathrm{~mm} \mathrm{Hg}=51^{\circ} \mathrm{C}$
Boiling point elevation $=56^{\circ} \mathrm{C}$
Enthalpy of feed at $38^{\circ} \mathrm{C}=30.6 \mathrm{Kcal} / \mathrm{Kg}$ Enthalpy of Thick Liquor $=156 \mathrm{Kcal} / \mathrm{Kg}$.
7. A gas at $-15^{0} \mathrm{C}$ flows over a flat plate maintained at $5{ }^{\circ} \mathrm{C}$. Free stream velocity of gas is $12.5 \mathrm{~m} / \mathrm{s}$. The length of the plate is 3.8 m . Calculate the average value of heat transfer coefficient with and without accounting for the laminar boundary layer. Properties of gas: Density $=1.247 \mathrm{~kg} / \mathrm{m}^{3}$; Specific heat $=1005 \mathrm{~J} / \mathrm{kg}{ }^{0} \mathrm{~K}$; thermal conductivity $=0.0251 \mathrm{w} / \mathrm{m}^{0} \mathrm{~K}$. Viscosity $=1.76 \times 10^{-5} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$.
8. Two large parallel planes having emissivitys of 0.4 and 0.6 are maintained at temperatures of 820 K and 420 K , respectively. A radiation shield having an emissivity of 0.06 on both sides is placed between the two planes. Calculate.
(a) the heat- transfer rate per unit area if the shield were not present
(b) the heat - transfer rate per unit area with the shield present.

II B.Tech II Semester Examinations,APRIL 2011
 PROCESS HEAT TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Liquid Benzene at $75^{0} \mathrm{C}$ is to be cooled to $40^{\circ} \mathrm{C}$. Flow rate of Benzene is $1.45 \mathrm{~kg} / \mathrm{sec}$ while the cooling water flow rate is $0.95 \mathrm{~kg} / \mathrm{sec}$. cooling water is circulating through the tubes at a temperature of $15^{\circ} \mathrm{C}$. Calculate the heat transfer arearequired for
(a) single pass co-current and counter current flow H.E
(b) Multipass shell and tube heat exchanger. Data available; specific heat of Benzene $=1760 J / \mathrm{kgk}$ specific heat of water $=4180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{k}$ LMTD correction factor $=0.94$.
2. (a) What are the advantages and disadvantages of more number of passes on tube side and shell side of shell and tube heat - exchanger.
(b) Find out the length of the tube required for the following heat transfer where air is heated by exhaust gases. Q (heat transfer/hr) $=8000$ Kcal.
Inside $\left(D_{i}\right)$ and outside diameter $\left(D_{o}\right)$ of tube are 5 cm and 6 cm respectively.
$\mathrm{H}_{\mathrm{i}}($ Inside heat transfer coefficient Air side $)=100 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}$
h_{o} (out heat transfer coefficient gas side) $=160 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}$
$\mathrm{T}_{\mathrm{hi}}=400^{\circ} \mathrm{C} \quad \mathrm{T}_{\mathrm{ho}}=150{ }^{\circ} \mathrm{C}_{\mathrm{ci}}=50^{\circ} \mathrm{C}_{\mathrm{co}}=100{ }^{\circ} \mathrm{C}$
Neglect the tube resistance and assume flow arrangement is parallel.
If the flow is made counter current then what is the percentage saving in the tube length.
3. (a) Discuss the regimes of boiling heat transfer with the help of a boiling curve. Why is heat transfer coefficients lowered in film boiling as compared to nucleate boiling?
(b) What are the types of condensation? Which type is advantageous. [11+5]
4. A single effect evaporator is to concentrate $9070 \mathrm{~kg} / \mathrm{hr}$ of a 20% solution of NaOH to 60% solids. The gauge pressure of the steam is $1.5 \mathrm{kgf} / \mathrm{cm}^{2}$. The absolute pressure in the vapour space is 100 mm Hg . The feed temperature is $38^{\circ} \mathrm{C}$ and the overall heat transfer coefficient is $1220 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}\left(1420 \mathrm{~W} / \mathrm{m}^{0} 2 \mathrm{~K}\right)$. Calculate the steam consumption, economy and the heating surface required.
DATA: Boiling point of water at $100 \mathrm{~mm} \mathrm{Hg}=51^{\circ} \mathrm{C}$
Boiling point elevation $=56^{\circ} \mathrm{C}$
Enthalpy of feed at $38^{\circ} \mathrm{C}=30.6 \mathrm{Kcal} / \mathrm{Kg}$
Enthalpy of Thick Liquor $=156 \mathrm{Kcal} / \mathrm{Kg}$.
5. (a) Derive an expression for steady state conduction through a wall of hollow sphere of inner radius r_{1} and outer radius r_{0}, thermal conductivity ' k ' the inside and outside surfaces of the wall are at constant temperatures T_{1} and T_{2}. show that the mean area employ in the equation is equal to $\sqrt{A_{1} A_{0}}$
(b) A copper plate $\left(\mathrm{k}=372 \mathrm{w} / \mathrm{m}^{0} \mathrm{C}\right)$ is 3 mm thick. It is protected from corrosion by 2 mm thick layer of stainless steel $\left(\mathrm{k}=17 \mathrm{w} / \mathrm{m}^{0} \mathrm{C}\right)$ on both the sides. The
temperatures of the two outer surfaces of steel are $400^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. calculate the temperature at the two interfaces.
[8+8]
6. A horizontal cylinder 0.025 m diameter and 0.5 m long is suspended in water at 20 ${ }^{0} \mathrm{C}$. Calculate the rate of heat transfer if the cylinder surface is at $60{ }^{\circ} \mathrm{C}$. Use the following correlation. $\mathrm{Nu}=0.53(\mathrm{Gr} \operatorname{Pr})^{0.25}$. Physical properties of water at the mean film temperature are : $\mathrm{K}=0.63 \mathrm{w} / \mathrm{m}{ }^{0} \mathrm{~K}$; Viscosity $=2.35 \mathrm{~kg} / \mathrm{m} . \mathrm{h}$; Density $=992 \mathrm{~kg} / \mathrm{m}^{3} ; \operatorname{Pr}=4.3$.
7. Two large parallel planes having emissivitys of 0.4 and 0.6 are maintained at temperatures of 820 K and 420 K , respectively. A radiation shield having an emissivity of 0.06 on both sides is placed between the two planes. Calculate.
(a) the heat- transfer rate per unit area if the shield were not present
(b) the heat - transfer rate per unit area with the shield present.
8. A gas at $-15{ }^{0} \mathrm{C}$ flows over a flat plate maintained at $5^{0} \mathrm{C}$. Free stream velocity of gas is $12.5 \mathrm{~m} / \mathrm{s}$. The length of the plate is 3.8 m . Calculate the average value of heat transfer coefficient with and without accounting for the laminar boundary layer. Properties of gas: Density $=1.247 \mathrm{~kg} / \mathrm{m}^{3}$; Specific heat $=1005 \mathrm{~J} / \mathrm{kg}{ }^{0} \mathrm{~K}$; thermal conductivity $=0.0251 \mathrm{w} / \mathrm{m}^{0} \mathrm{~K}$. Viscosity $=1.76 \times 10^{-5} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$.

II B.Tech II Semester Examinations,APRIL 2011
 PROCESS HEAT TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A horizontal cylinder 0.025 m diameter and 0.5 m long is suspended in water at 20 ${ }^{0} \mathrm{C}$. Calculate the rate of heat transfer if the cylinder surface is at $60{ }^{\circ} \mathrm{C}$. Use the following correlation. $\mathrm{Nu}=0.53(\mathrm{Gr} \operatorname{Pr})^{0.25}$. Physical properties of water at the mean film temperature are : $\mathrm{K}=0.63 \mathrm{w} / \mathrm{m}{ }^{0} \mathrm{~K}$; Viscosity $=2.35 \mathrm{~kg} / \mathrm{m} . \mathrm{h}$, Density $=992 \mathrm{~kg} / \mathrm{m}^{3} ; \operatorname{Pr}=4.3$.
2. Liquid Benzene at $75^{\circ} \mathrm{C}$ is to be cooled to $40^{\circ} \mathrm{C}$. Flow rate of Benzene is $1.45 \mathrm{~kg} / \mathrm{sec}$ while the cooling water flow rate is $0.95 \mathrm{~kg} / \mathrm{sec}$. cooling water is circulating through the tubes at a temperature of $15^{\circ} \mathrm{C}$. Calculate the heat transfer area required for
(a) single pass co-current and counter current flow H.E
(b) Multipass shell and tube heat exchanger

Data available; specific heat of Benzene $=1760 \mathrm{~J} / \mathrm{kgk}$
specific heat of water $=4180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{k}$
LMTD correction factor $=0.94$.
3. A single effect evaporator is to concentrate $9070 \mathrm{~kg} / \mathrm{hr}$ of a 20% solution of NaOH to 60% soliels. The gauge pressure of the steam is $1.5 \mathrm{kgf} / \mathrm{cm}^{2}$. The absolute pressure in the vapour space is 100 mm Hg . The feed temperature is $38^{\circ} \mathrm{C}$ and the overall heat transfer coefficient is $1220 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}\left(1420 \mathrm{~W} / \mathrm{m}^{0} 2 \mathrm{~K}\right)$. Calculate the steam consumption, economy and the heating surface required.
DATA: Boiling point of water at $100 \mathrm{~mm} \mathrm{Hg}=51^{\circ} \mathrm{C}$
Boiling point elevation $=56^{\circ} \mathrm{C}$
Enthalpy of feed at $38^{\circ} \mathrm{C}=30.6 \mathrm{Kcal} / \mathrm{Kg}$
Enthalpy of Thick Liquor $=156 \mathrm{Kcal} / \mathrm{Kg}$.
4. (a) Discuss the regimes of boiling heat transfer with the help of a boiling curve. Why is heat transfer coefficients lowered in film boiling as compared to nucleate boiling?
(b) What are the types of condensation? Which type is advantageous. [11+5]
5. Two large parallel planes having emissivitys of 0.4 and 0.6 are maintained at temperatures of 820 K and 420 K , respectively. A radiation shield having an emissivity of 0.06 on both sides is placed between the two planes. Calculate.
(a) the heat- transfer rate per unit area if the shield were not present
(b) the heat - transfer rate per unit area with the shield present.
6. (a) What are the advantages and disadvantages of more number of passes on tube side and shell side of shell and tube heat - exchanger.
(b) Find out the length of the tube required for the following heat transfer where air is heated by exhaust gases. Q (heat transfer $/ \mathrm{hr}$) $=8000 \mathrm{Kcal}$.
Inside $\left(D_{i}\right)$ and outside diameter $\left(D_{o}\right)$ of tube are 5 cm and 6 cm respectively.
$\mathrm{H}_{\mathrm{i}}($ Inside heat transfer coefficient Air side $)=100 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}$
h_{o} (out heat transfer coefficient gas side) $=160 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{hi}}=400{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{ho}}=150{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{ci}}=50{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{co}}=100^{\circ} \mathrm{C}$
Neglect the tube resistance and assume flow arrangement is parallel.
If the flow is made counter current then what is the percentage saving in the tube length.
7. (a) Derive an expression for steady state conduction through a wall of hollow sphere of inner radius r_{1} and outer radius r_{0}, thermal conductivity ' k ' the inside and outside surfaces of the wall are at constant temperatures T_{1} and T_{2}. show that the mean area employ in the equation is equal to $\sqrt{A_{1} A_{0}}$
(b) A copper plate $\left(\mathrm{k}=372 \mathrm{w} / \mathrm{m}^{0} \mathrm{C}\right)$ is 3 mm thick. It is protected from corrosion by 2 mm thick layer of stainless steel $\left(\mathrm{k}=17 \mathrm{w} / \mathrm{m}^{0} \mathrm{C}\right)$ on both the sides. The temperatures of the two outer surfaces of steel are $400^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. calculate the temperature at the two interfaces.
[8+8]
8. A gas at $-15^{0} \mathrm{C}$ flows over a flat plate maintained at $5^{\circ} \mathrm{C}$. Free stream velocity of gas is $12.5 \mathrm{~m} / \mathrm{s}$. The length of the plate is 3.8 m . Calculate the average value of heat transfer coefficient with and without accounting for the laminar boundary layer. Properties of gas: Density $=1.247 \mathrm{~kg} / \mathrm{m}^{3}$; Specific heat $=1005 \mathrm{~J} / \mathrm{kg}{ }^{0} \mathrm{~K}$; thermal conductivity $=0.0251 \mathrm{w} / \mathrm{m}^{0} \mathrm{~K}$. Viscosity $=1.76 \times 10^{-5} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$.
[16]

II B.Tech II Semester Examinations,APRIL 2011
 PROCESS HEAT TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Two large parallel planes having emissivitys of 0.4 and 0.6 are maintained at temperatures of 820 K and 420 K , respectively. A radiation shield having an emissivity of 0.06 on both sides is placed between the two planes. Calculate.
(a) the heat- transfer rate per unit area if the shield were not present
(b) the heat - transfer rate per unit area with the shield present.
2. (a) What are the advantages and disadvantages of more number of passes on tube side and shell side of shell and tube heat - exchanger.
(b) Find out the length of the tube required for the following heat transfer where air is heated by exhaust gases.

Q (heat transfer/hr) $=8000 \mathrm{Kcal}$.
Inside $\left(D_{i}\right)$ and outside diameter $\left(D_{o}\right)$ of tube are 5 cm and 6 cm respectively.
H_{i} (Inside heat transfer coefficient Air side) $=100 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{\circ} \mathrm{C}$
$\mathrm{h}_{\mathrm{o}}($ out heat transfer coefficient gas side $)=160 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}$
$\mathrm{T}_{\mathrm{hi}}=400^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{ho}}=150{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{ci}}=50^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{co}}=100^{\circ} \mathrm{C}$
Neglect the tube resistance and assume flow arrangement is parallel.
If the flow is made counter current then what is the percentage saving in the tube length.
3. Liquid Benzene at $75^{\circ} \mathrm{C}$ is to be cooled to $40^{\circ} \mathrm{C}$. Flow rate of Benzene is $1.45 \mathrm{~kg} / \mathrm{sec}$ while the cooling water flow rate is $0.95 \mathrm{~kg} / \mathrm{sec}$. cooling water is circulating through the tubes at a temperature of $15^{\circ} \mathrm{C}$. Calculate the heat transfer area required for
(a) single pass co-current and counter current flow H.E
(b) Multipass shell and tube heat exchanger.

Data available; specific heat of Benzene $=1760 \mathrm{~J} / \mathrm{kgk}$
specific heat of water $=4180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{k}$
LMTD correction factor $=0.94$.
4. (a) Discuss the regimes of boiling heat transfer with the help of a boiling curve. Why is heat transfer coefficients lowered in film boiling as compared to nucleate boiling?
(b) What are the types of condensation? Which type is advantageous. $[11+5]$
5. (a) Derive an expression for steady state conduction through a wall of hollow sphere of inner radius r_{1} and outer radius r_{0}, thermal conductivity ' k ' the inside and outside surfaces of the wall are at constant temperatures T_{1} and T_{2}. show that the mean area employ in the equation is equal to $\sqrt{A_{1} A_{0}}$
(b) A copper plate $\left(\mathrm{k}=372 \mathrm{w} / \mathrm{m}^{0} \mathrm{C}\right)$ is 3 mm thick. It is protected from corrosion by 2 mm thick layer of stainless steel $\left(\mathrm{k}=17 \mathrm{w} / \mathrm{m}^{0} \mathrm{C}\right)$ on both the sides. The temperatures of the two outer surfaces of steel are $400^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. calculate the temperature at the two interfaces.
$[8+8]$
6. A single effect evaporator is to concentrate $9070 \mathrm{~kg} / \mathrm{hr}$ of a 20% solution of NaOH to 60% solids. The gauge pressure of the steam is $1.5 \mathrm{kgf} / \mathrm{cm}^{2}$. The absolute pressure in the vapour space is 100 mm Hg . The feed temperature is $38^{\circ} \mathrm{C}$ and the overall heat transfer coefficient is $1220 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hr}{ }^{0} \mathrm{C}\left(1420 \mathrm{~W} / \mathrm{m}^{0} 2 \mathrm{~K}\right)$. Calculate the steam consumption, economy and the heating surface required.
DATA: Boiling point of water at $100 \mathrm{~mm} \mathrm{Hg}=51^{\circ} \mathrm{C}$
Boiling point elevation $=56^{\circ} \mathrm{C}$
Enthalpy of feed at $38^{\circ} \mathrm{C}=30.6 \mathrm{Kcal} / \mathrm{Kg}$ Enthalpy of Thick Liquor $=156 \mathrm{Kcal} / \mathrm{Kg}$.
7. A gas at $-15^{0} \mathrm{C}$ flows over a flat plate maintained at $5{ }^{\circ} \mathrm{C}$. Free stream velocity of gas is $12.5 \mathrm{~m} / \mathrm{s}$. The length of the plate is 3.8 m . Calculate the average value of heat transfer coefficient with and without accounting for the laminar boundary layer. Properties of gas: Density $=1.247 \mathrm{~kg} / \mathrm{m}^{3}$; Specific heat $=1005 \mathrm{~J} / \mathrm{kg}{ }^{0} \mathrm{~K}$; thermal conductivity $=0.0251 \mathrm{w} / \mathrm{m}^{0} \mathrm{~K}$. Viscosity $=1.76 \times 10^{-5} \mathrm{~N} / \mathrm{s} / \mathrm{m}^{2}$.
8. A horizontal cylinder 0.025 m diameter and 0.5 m -long is suspended in water at 20 ${ }^{0} \mathrm{C}$. Calculate the rate of heat transfer if the cylinder surface is at $60{ }^{\circ} \mathrm{C}$. Use the following correlation. $\mathrm{Nu}=0.53(\mathrm{Gr} \operatorname{Pr})^{0.25}$. Physical properties of water at the mean film temperature are : $\mathrm{K}=0.63 \mathrm{w} / \mathrm{m}^{0} \mathrm{~K}$; Viscosity $=2.35 \mathrm{~kg} / \mathrm{m} . \mathrm{h}$; Density $=992 \mathrm{~kg} / \mathrm{m}^{3} ; \operatorname{Pr}=4.3$.

