Set No. 2

II B.Tech II Semester Examinations, APRIL 2011 **MATHEMATICS - III**

Metallurgy And Material Technology

Time: 3 hours

Code No: 07A4BS02

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Find the singular points of the function.
 - (a) $\frac{z^2}{z^4+1}$
 - (b) $\frac{z^2}{1-z^4}$

[16]

- (a) If tan(x+iy) = A+iB show that $A^2+B^2+2A\cot 2x = 1$.
 - (b) Find the principal value of $(2i)^{2i}$

[8+8]

- 3. Show by the method of residues, $\int_{0}^{\pi} \frac{d\theta}{a+b\cos\theta} =$ [16]
- 4. (a) Evaluate $\int_C \frac{z+2}{z} dz$ where C is

 - i. the semi circle $z=2e^{i\theta},\,\pi\leq\theta\leq2\pi$ ii. the circle $z=2e^{i\theta},\,-\pi\leq\theta\leq\pi$
 - (b) Use Cauchy's integral formula to evaluate $\oint_c \frac{(e^z + z \sinh z)}{(z \pi i)^2} dz$ where c is the circle [10+6]
- (a) Find the bilinear transformation which maps vertices (1 + i, -i, 2-i) of the triangle T of the z-plane in to the points (0, 1, i) of the w-plane.
 - (b) Find the image of the semi-infinite strip $x \ge 0, 0 \le y \le \pi$ under the mapping $w = \cosh z$. [8+8]
- 6. (a) State and prove Fundamental theorem of Algebra.
 - (b) State and prove Liouville's theorem.

[8+8]

[5+5+6]

- 7. Using $\beta \Gamma$ functions
 - (a) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan\theta} \ d\theta = \frac{1}{2} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{1}{2} \pi \sqrt{2}$.
 - (b) Prove that $\int_{0}^{1} (1-x^{n})^{\frac{1}{n}} dx = \frac{\left[\Gamma(\frac{1}{n})\right]^{2}}{n^{2}\Gamma(\frac{2}{n})}$.
 - (c) Prove that $\beta(m, n) = \beta(m+1, n) + \beta(m, n+1)$
- 8. The necessary and sufficient conditions for the function f(z) = u(x, y) + i v(x, y)to be analytic in the region R, are

R07

Set No. 2

(a) $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ are continuous functions of x and y in R.

(b)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 , $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ [16]

Set No. 4

II B.Tech II Semester Examinations, APRIL 2011 **MATHEMATICS - III**

Metallurgy And Material Technology

Time: 3 hours

Code No: 07A4BS02

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) If tan(x+iy) = A+iB show that $A^2+B^2+2Acot2x = 1$.
 - (b) Find the principal value of $(2i)^{2i}$

|8+8|

- 2. The necessary and sufficient conditions for the function f(z) = u(x, y) +to be analytic in the region R, are
 - (a) $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are continuous functions of x and y in R. (b) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

[16]

- 3. Using $\beta \Gamma$ functions
 - (a) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta = \frac{1}{2} \Gamma \left(\frac{1}{4}\right) \Gamma \left(\frac{3}{4}\right)$
 - (b) Prove that $\int_{0}^{1} (1-x^n)^{\frac{1}{n}} dx = \frac{\left[\Gamma\left(\frac{1}{n}\right)\right]^2}{n^2 \Gamma\left(\frac{2}{n}\right)}$
 - (c) Prove that $\beta(m, n) = \beta(m+1, n) + \beta(m, n+1)$ [5+5+6]
- 4. Show by the method of residues, $\int_{0}^{\pi} \frac{d\theta}{a+b\cos\theta} = \frac{\pi}{\sqrt{a^2-b^2}}$ (a > b > 0). [16]
- 5. Find the singular points of the function.
 - (a) $\frac{z^2}{z^4+1}$

(b) $\frac{z^2}{1-z^4}$ [16]

- 6. (a) Evaluate $\int_{C} \frac{z+2}{z} dz$ where C is
 - i. the semi circle $z = 2e^{i\theta}$, $\pi < \theta < 2\pi$
 - ii. the circle $z = 2e^{i\theta}, -\pi \le \theta \le \pi$
 - (b) Use Cauchy's integral formula to evaluate $\oint_{c} \frac{(e^z + z \sinh z)}{(z \pi i)^2} dz$ where c is the circle |z| = 4[10+6]
- 7. (a) State and prove Fundamental theorem of Algebra.
 - (b) State and prove Liouville's theorem. [8+8]
- (a) Find the bilinear transformation which maps vertices (1 + i, -i, 2-i) of the triangle T of the z-plane in to the points (0, 1, i) of the w-plane.

R07

Set No. 4

(b) Find the image of the semi-infinite strip $x \ge 0, 0 \le y \le \pi$ under the mapping $w = \cosh z$. [8+8]

Set No. 1

II B.Tech II Semester Examinations, APRIL 2011 **MATHEMATICS - III**

Metallurgy And Material Technology

Time: 3 hours

Code No: 07A4BS02

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Show by the method of residues, $\int_{0}^{\pi} \frac{d\theta}{a+b\cos\theta} = \frac{\pi}{\sqrt{a^2-b^2}}$ (a > b > 0). [16]
- 2. (a) Evaluate $\int_{C} \frac{z+2}{z} dz$ where C is
 - i. the semi circle $z = 2e^{i\theta}, \pi \le \theta \le 2\pi$
 - ii. the circle $z = 2e^{i\theta}, -\pi \le \theta \le \pi$
 - (b) Use Cauchy's integral formula to evaluate $\oint \frac{(e^z + z \sin z)}{(z \pi i)^2} dz$ where c is the circle |z| = 4[10+6]
- (a) Find the bilinear transformation which maps vertices (1 + i, -i, 2-i) of the triangle T of the z-plane in to the points (0, 1, i) of the w-plane.
 - (b) Find the image of the semi-infinite strip $x \ge 0, 0 \le y \le \pi$ under the mapping $w = \cosh z$.
- 4. The necessary and sufficient conditions for the function f(z) = u(x, y) + i v(x, y)to be analytic in the region R, are

(a)
$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$
 are continuous functions of x and y in R.
(b) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ [16]

- 5. Find the singular points of the function.
 - (a) $\frac{z^2}{z^4+1}$

(b)
$$\frac{z^2}{1-z^4}$$

- (a) State and prove Fundamental theorem of Algebra.
 - (b) State and prove Liouville's theorem. [8+8]
- 7. (a) If tan(x+iy) = A+iB show that $A^2+B^2+2Acot2x = 1$.
 - (b) Find the principal value of $(2i)^{2i}$ [8+8]
- 8. Using $\beta \Gamma$ functions
 - (a) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan\theta} \ d\theta = \frac{1}{2} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{1}{2}\pi \sqrt{2}$.
 - (b) Prove that $\int_{0}^{1} (1-x^{n})^{\frac{1}{n}} dx = \frac{\left[\Gamma(\frac{1}{n})\right]^{2}}{n^{2}\Gamma(\frac{2}{n})}$.

R07

Set No. 1

(c) Prove that $\beta(m, n) = \beta(m+1, n) + \beta(m, n+1)$

[5+5+6]

CRSTANICE

Set No. 3

II B.Tech II Semester Examinations, APRIL 2011 MATHEMATICS - III

Metallurgy And Material Technology

Time: 3 hours

Code No: 07A4BS02

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find the bilinear transformation which maps vertices (1 + i, -i, 2-i) of the triangle T of the z-plane in to the points (0, 1, i) of the w-plane.
 - (b) Find the image of the semi-infinite strip $x \ge 0, 0 \le y \le \pi$ under the mapping $w = \cosh z$. [8+8]
- 2. (a) State and prove Fundamental theorem of Algebra.
 - (b) State and prove Liouville's theorem.

[8+8]

- 3. The necessary and sufficient conditions for the function f(z) = u(x, y) + i v(x, y) to be analytic in the region R, are
 - (a) $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are continuous functions of x and y in R.

(b)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ [16]

- 4. Find the singular points of the function.
 - (a) $\frac{z^2}{z^4+z^2}$

(b)
$$\frac{z^2}{1-z^4}$$
 [16]

- 5. Using $\beta \Gamma$ functions
 - (a) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan\theta} \ d\theta = \frac{1}{2} \Gamma \left(\frac{1}{4} \right) \Gamma \left(\frac{3}{4} \right) = \frac{1}{2} \pi \sqrt{2}.$
 - (b) Prove that $\int_{0}^{1} (1-x^{n})^{\frac{1}{n}} dx = \frac{\left[\Gamma(\frac{1}{n})\right]^{2}}{n^{2}\Gamma(\frac{2}{n})}$.
 - (c) Prove that $\beta(m, n) = \beta(m+1, n) + \beta(m, n+1)$ [5+5+6]
- 6. Show by the method of residues, $\int_{0}^{\pi} \frac{d\theta}{a + b \cos \theta} = \frac{\pi}{\sqrt{a^2 b^2}} \text{ (a > b > 0)}.$ [16]
- 7. (a) If tan(x+iy) = A+iB show that $A^2+B^2+2Acot2x = 1$.
 - (b) Find the principal value of $(2i)^{2i}$ [8+8]
- 8. (a) Evaluate $\int_C \frac{z+2}{z} dz$ where C is
 - i. the semi circle $z = 2e^{i\theta}, \pi \le \theta \le 2\pi$
 - ii. the circle $z = 2e^{i\theta}, -\pi \le \theta \le \pi$

R07

Set No. 3

(b) Use Cauchy's integral formula to evaluate $\oint_c \frac{(e^z + z \sinh z)}{(z - \pi i)^2} dz$ where c is the circle |z| = 4 [10+6]

CIPS TO ANY CONTROL OF THE PARTY OF THE PART