R07

Set No. 2

Time: 3 hours

Code No: 07A4BS04

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series.
 - i. about the point z=0
 - ii. about the point z=1Determine the region of convergence in each case.
 - iii. if $f(z)=\!\frac{z\!+\!4}{(z\!+\!3)(z\!-\!1)^2}$, find Laurent's series expansions in. A. 0 < |z - 1| < 4 and B. |z - 1| > 4

[8+8]

- 2. (a) Two dice are thrown together. Find the probability that
 - i. the sum of numbers on their faces is 9
 - ii. the numbers on their faces are both odd
 - iii. the numbers on their faces are same.
 - (b) A distributor receives 20%, 15%, 35% and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of 1%, 2%, 2% and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? |8+8|
- (a) When n is a positive integer, Prove that $\frac{d}{dx} [x^n J_n(\mathbf{X})] = x^n J_{n-1}(\mathbf{X})$ Hence 3. show that $J_{n-1}(\mathbf{X}) = \frac{n}{x} J_n(\mathbf{X}) + J'_{n(x)}$
 - (b) Prove that $\frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x)$ Hence show that $J_{n-1}(x) = \frac{n}{x} J_n(x) [8+8]$ $J'_{n(x)}$.
- (a) Evaluate $\int_{c} \frac{e^{z} dz}{(z^{2} + \pi^{2})^{2}}$ where e is the circle |z| = 4 by using Cauchy's integral 4. formula.
 - (b) Evaluate $\int_c \frac{z \, dz}{(z^2 6z + 25)^2}$ where C is |z (3 + 4i)| = 9 using Cauchys integral formula. [8+8]
- (a) Discuss the transformation $w = e^z$ and show that the region between the real 5. axis and the line $y = \pi$ in the z- plane is transformed to upper half of the w plane.
 - (b) Determine bilinear transformation which map the points $z = 0, 1, \infty$ into w = -5,-1, 3 Find the critical and fixed points of the transformation. [8+8]
- 6. (a) write down the the law of transformation for the tensors

i. A_i^{kj}

Code No: 07A4BS04

$\mathbf{R07}$

Set No. 2

ii. C_{mn}

- (b) Define Christoffel symbol of second kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2 \sin^2 \theta$ ($d\varphi)^2$, then find the value of [1,22] and [3,13] [8+8]
- 7. (a) Find all values of K such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic
 - (b) Find the analytic function whose real part is $\frac{x}{x^2+y^2}$
 - (c) Find all the roots of the equation $\cos z = 2$. [5+5+6]
- 8. (a) Let X be a continuous random variable with probability function

$$f(x) = ax \qquad 0 \le x \le 1$$

= a
$$1 \le x \le 1$$

= -ax + 3a
$$2 \le x \le 3$$

= 0 elsewhere

Determine a and compute $P(X \le 1.5)$

- (b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
 - i. less than 500 hours
 - ii. more than 600 hours
 - iii. between 700 and 800 hours.

[8+8]

R07

Set No. 4

Time: 3 hours

Code No: 07A4BS04

Max Marks: 80

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

(a) Let X be a continuous random variable with probability function 1.

 $f(x) = ax \qquad 0 \le x \le 1$ = a $1 \le x \le 1$ = -ax + 3a $2 \le x \le 3$ elsewhere

Determine a and compute $P(X \le 1.5)$

- (b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
 - i. less than 500 hours
 - ii. more than 600 hours
 - iii. between 700 and 800 hours.
- 2. (a) write down the the law of transformation for the tensors
 - i. A^{kj} ii. C_{mn}
 - (b) Define Christoffel symbol of second kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2 \sin^2 \theta$ $(d\varphi)^2$, then find the value of [1,22] and [3,13]
- (a) When n is a positive integer, Prove that $\frac{d}{dx} [x^n J_n(\mathbf{X})] = x^n J_{n-1}(\mathbf{X})$ Hence 3. show that $J_{n-1}(\mathbf{X}) = \frac{n}{x} J_n(\mathbf{X}) + J'_{n(x)}$
 - (b) Prove that $\frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x)$ Hence show that $J_{n-1}(x) = \frac{n}{x} J_n(x) [8+8]$ $J'_{n(x)}$.
- 4. (a) Evaluate $\int_{c} \frac{e^{z} dz}{(z^{2} + \pi^{2})^{2}}$ where e is the circle |z| = 4 by using Cauchy's integral formula.
 - (b) Evaluate $\int_c \frac{z \, dz}{(z^2 6z + 25)^2}$ where C is |z (3 + 4i)| = 9 using Cauchys integral formula. [8+8]
- (a) Two dice are thrown together. Find the probability that 5.
 - i. the sum of numbers on their faces is 9
 - ii. the numbers on their faces are both odd
 - iii. the numbers on their faces are same.

www.firstranker.com

Code No: 07A4BS04

R07

Set No. 4

- (b) A distributor receives 20%, 15%, 35% and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of 1%, 2%, 2% and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? [8+8]
- (a) Discuss the transformation $w = e^z$ and show that the region between the real 6. axis and the line $y = \pi$ in the z- plane is transformed to upper half of the w plane.
 - (b) Determine bilinear transformation which map the points $z = 0, 1, \infty$ into w = -5,-1, 3 Find the critical and fixed points of the transformation. [8+8]
- (a) Find all values of K such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic 7.
 - (b) Find the analytic function whose real part is $\frac{x}{x^2+y^2}$
 - (c) Find all the roots of the equation $\cos z = 2$.

[5+5+6]

- (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series. 8.
 - i. about the point z=0
 - ii. about the point z=1Determine the region of convergence in each case.
 - iii. if $f(z)=\frac{z+4}{(z+3)(z-1)^2}$, find Laurent's series expansions in.
 - A. 0 < |z 1| < 4 and

B. |z-1| > 4

[8+8]

R07

Set No. 1

Time: 3 hours

Code No: 07A4BS04

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Two dice are thrown together. Find the probability that
 - i. the sum of numbers on their faces is 9
 - ii. the numbers on their faces are both odd
 - iii. the numbers on their faces are same.
 - (b) A distributor receives 20%, 15%, 35% and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of 1%, 2%, 2% and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? [8+8]
- 2. (a) Evaluate $\int_{c} \frac{e^{z} dz}{(z^{2} + \pi^{2})^{2}}$ where e is the circle |z| = 4 by using Cauchy's integral formula.
 - (b) Evaluate $\int_c \frac{z \, dz}{(z^2 6z + 25)^2}$ where C is |z (3 + 4i)| = 9 using Cauchys integral formula. [8+8]
- (a) Let X be a continuous random variable with probability function 3.

 $0 \le x \le 1$ f(x) = ax $\begin{array}{ll} a & 1 \le x \le 1 \\ -ax + 3a & 2 \le x \le 3 \end{array}$ elsewhere = 0

Determine a and compute $P(X \le 1.5)$

- (b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
 - i. less than 500 hours
 - ii. more than 600 hours
 - iii. between 700 and 800 hours.

[8+8]

- 4. (a) Find all values of K such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic
 - (b) Find the analytic function whose real part is $\frac{x}{x^2+y^2}$
 - [5+5+6](c) Find all the roots of the equation $\cos z = 2$.
- (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series. 5.
 - i. about the point z=0
 - ii. about the point z=1Determine the region of convergence in each case.

Code No: 07A4BS04

$$\mathbf{R07}$$

Set No. 1

- iii. if $f(z) = \frac{z+4}{(z+3)(z-1)^2}$, find Laurent's series expansions in. A. 0 < |z-1| < 4 and B. |z-1| > 4 [8+8]
- 6. (a) write down the the law of transformation for the tensors
 - i. A^{kj}
 - ii. C_{mn}
 - (b) Define Christoffel symbol of second kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2 \sin^2 \theta$ ($d\varphi)^2$, then find the value of [1,22] and [3,13] [8+8]
- 7. (a) When n is a positive integer, Prove that $\frac{d}{dx} [x^n J_n(X)] = x^n J_{n-1}(X)$ Hence show that $J_{n-1}(X) = \frac{n}{x} J_n(X) + J'_{n(x)}$
 - (b) Prove that $\frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x)$ Hence show that $J_{n-1}(x) = \frac{n}{x} J_n(x) J'_{n(x)}$. [8+8]
- 8. (a) Discuss the transformation $w = e^z$ and show that the region between the real axis and the line $y = \pi$ in the z- plane is transformed to upper half of the w plane.
 - (b) Determine bilinear transformation which map the points $z = 0, 1, \infty$ into w = -5, -1, 3 Find the critical and fixed points of the transformation. [8+8]

R07

Set No. 3

Time: 3 hours

Code No: 07A4BS04

Max Marks: 80

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Two dice are thrown together. Find the probability that
 - i. the sum of numbers on their faces is 9
 - ii. the numbers on their faces are both odd
 - iii. the numbers on their faces are same.
 - (b) A distributor receives 20%, 15%, 35% and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of 1%, 2%, 2% and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? |8+8|
- 2. (a) When n is a positive integer, Prove that $\frac{d}{dx}[x^n J_n(X)] = x^n J_{n-1}(X)$ Hence show that $J_{n-1}(\mathbf{X}) = \frac{n}{x} J_n(\mathbf{X}) + J'_{n(x)}$
 - (b) Prove that $\frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x)$ Hence show that $J_{n-1}(x) = \frac{n}{x} J_n(x)$ [8+8]
- (a) write down the the law of transformation for the tensors 3.
 - i. A_i^{kj} ii. C_{mr}

f

- (b) Define Christoffel symbol of second kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2 \sin^2 \theta$ $(d\varphi)^2$, then find the value of [1,22] and [3,13]
- 4. (a) Let X be a continuous random variable with probability function

$$\begin{aligned} (x) &= ax & 0 \le x \le 1 \\ &= a & 1 \le x \le 1 \\ &= -ax + 3a & 2 \le x \le 3 \\ &= 0 & elsewhere \end{aligned}$$

Determine a and compute $P(X \le 1.5)$

- (b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
 - i. less than 500 hours
 - ii. more than 600 hours
 - iii. between 700 and 800 hours.
- (a) Discuss the transformation $w = e^z$ and show that the region between the real 5. axis and the line $y = \pi$ in the z- plane is transformed to upper half of the wplane.

www.firstranker.com

Code No: 07A4BS04

$\mathbf{R07}$

Set No. 3

-1

- (b) Determine bilinear transformation which map the points $z = 0, 1, \infty$ into w = -5,-1, 3 Find the critical and fixed points of the transformation. [8+8]
- (a) Evaluate $\int_{c} \frac{e^{z} dz}{(z^{2} + \pi^{2})^{2}}$ where e is the circle |z| = 4 by using Cauchy's integral 6. formula.
 - (b) Evaluate $\int_c \frac{z \, dz}{(z^2 6z + 25)^2}$ where C is |z (3 + 4i)| = 9 using Cauchys integral formula. [8+8]
- 7. (a) Find all values of K such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic
 - (b) Find the analytic function whose real part is $\frac{x}{x^2+y^2}$
 - (c) Find all the roots of the equation $\cos z = 2$.
- 8. (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series.
 - i. about the point z=0
 - ii. about the point z=1Determine the region of convergence in each case.
 - iii. if $f(z) = \frac{z+4}{(z+3)(z-1)^2}$, find Laurent's series expansions in.

A. 0 < |z - 1| < 4 and B. |z - 1| > 4

[8+8]

[5+5+6]