II B.Tech II Semester Examinations,APRIL 2011 MATHEMATICS FOR AEROSPACE ENGINEERS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series.
i. about the point $\mathrm{z}=0$
ii. about the point $z=1$

Determine the region of convergence in each case.
iii. if $\mathrm{f}(\mathrm{z})=\frac{\mathrm{z}+4}{(\mathrm{z}+3)(z-1)^{2}}$, find Laurent's series expansions in
A. $0<|z-1|<4$ and
B. $|z-1|>4$
[8+8]
2. (a) Two dice are thrown together. Find the probability that
i. the sum of numbers on their faces is 9
ii. the numbers on their faces are both odd
iii. the numbers on their faces are same.
(b) A distributor receives $20 \%, 15 \%, 35 \%$ and 30% of eggs from four poultries A,B,C,D whieh contains rotten eggs of $1 \%, 2 \%, 2 \%$ and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C ? $[8+8]$
3. (a) When n is a positive integer, Prove that $\frac{d}{d x}\left[x^{n} J_{n}(\mathrm{X})\right]=x^{n} J_{n-1}(\mathrm{X})$ Hence show that $J_{n-1}(\mathrm{X})=\frac{n}{x} J_{n}(\mathrm{X})+J_{n(x)}^{\prime}$
(b) Prove that $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$ Hence show that $J_{n-1}(x)=\frac{n}{x} J_{n}(x)-$ $J_{n(x)}^{\prime}$.

$$
[8+8]
$$

4. (a) Evaluate $\int_{c} \frac{e^{z} d z}{\left(z^{2}+\pi^{2}\right)^{2}}$ where e is the circle $|z|=4$ by using Cauchy's integral formula.
(b) Evaluate $\int_{c} \frac{z d z}{\left(z^{2}-6 z+25\right)^{2}}$ where C is $|z-(3+4 i)|=9$ using Cauchys integral formula.

$$
[8+8]
$$

5. (a) Discuss the transformation $\mathrm{w}=\mathrm{e}^{z}$ and show that the region between the real axis and the line $\mathrm{y}=\pi$ in the z - plane is transformed to upper half of the w plane.
(b) Determine bilinear transformation which map the points $\mathrm{z}=0,1$, ∞ into w $=-5,-1,3$ Find the critical and fixed points of the transformation. $\quad[8+8]$
6. (a) write down the the law of transformation for the tensors
i. $A_{i}^{k j}$
ii. $\mathrm{C}_{m n}$
(b) Define Christoffel symbol of second kind. If $(\mathrm{ds})^{2}=(\mathrm{dr})^{2}+\mathrm{r}^{2}(\mathrm{~d} \theta)^{2}+\mathrm{r}^{2} \sin ^{2} \theta$ $(\mathrm{d} \varphi)^{2}$, then find the value of $[1,22]$ and $[3,13]$
7. (a) Find all values of K such that $\mathrm{f}(\mathrm{z})=e^{x}(\cos k y+i \sin k y)$ is analytic
(b) Find the analytic function whose real part is $\frac{x}{x^{2}+y^{2}}$
(c) Find all the roots of the equation $\cos \mathrm{z}=2$.

$$
[5+5+6]
$$

8. (a) Let X be a continuous random variable with probability function

$$
\begin{array}{rlr}
f(x)=a x & 0 \leq x \leq 1 \\
=a & 1 \leq x \leq 1 \\
=-a x+3 a & 2 \leq x \leq 3 \\
=0 & & \text { elsewhere }
\end{array}
$$

Determine a and compute $\mathrm{P}(\mathrm{X} \leq 1.5)$
(b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
i. less than 500 hours
ii. more than 600 hours
iii. between 700 and 800 hours.

II B.Tech II Semester Examinations,APRIL 2011 MATHEMATICS FOR AEROSPACE ENGINEERS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Let X be a continuous random variable with probability function

$$
\begin{aligned}
f(x) & =a x & & 0 \leq x \leq 1 \\
& =a & & 1 \leq x \leq 1 \\
& =-a x+3 a & & 2 \leq x \leq 3 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

Determine a and compute $\mathrm{P}(\mathrm{X} \leq 1.5)$
(b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
i. less than 500 hours
ii. more than 600 hours
iii. between 700 and 800 hours.
2. (a) write down the the law of transformation for the tensors
i. $A_{\mathrm{i}}^{\mathrm{kj}}$
ii. C_{m}
(b) Define Christoffel symbol of second kind. If $(\mathrm{ds})^{2}=(\mathrm{dr})^{2}+\mathrm{r}^{2}(\mathrm{~d} \theta)^{2}+\mathrm{r}^{2} \sin ^{2} \theta$ $(\mathrm{d} \varphi)^{2}$, then find the value of $[1,22]$ and $[3,13] \quad[8+8]$
3. (a) When n is a positive integer, Prove that $\frac{d}{d x}\left[x^{n} J_{n}(\mathrm{X})\right]=x^{n} J_{n-1}(\mathrm{X})$ Hence show that $J_{n-1}(\mathrm{X})=\frac{n}{x} J_{n}(\mathrm{X})+J_{n(x)}^{\prime}$
(b) Prove that $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$ Hence show that $J_{n-1}(x)=\frac{n}{x} J_{n}(x)-$ $J_{n(x)}^{\prime}$.
[8+8]
4. (a) Evaluate $\int_{c} \frac{e^{z} d z}{\left(z^{2}+\pi^{2}\right)^{2}}$ where e is the circle $|z|=4$ by using Cauchy's integral formula.
(b) Evaluate $\int_{c} \frac{z d z}{\left(z^{2}-6 z+25\right)^{2}}$ where C is $|z-(3+4 i)|=9$ using Cauchys integral formula.
5. (a) Two dice are thrown together. Find the probability that
i. the sum of numbers on their faces is 9
ii. the numbers on their faces are both odd
iii. the numbers on their faces are same.
(b) A distributor receives $20 \%, 15 \%, 35 \%$ and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of $1 \%, 2 \%, 2 \%$ and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C?
6. (a) Discuss the transformation $\mathrm{w}=\mathrm{e}^{z}$ and show that the region between the real axis and the line $\mathrm{y}=\pi$ in the z - plane is transformed to upper half of the w plane.
(b) Determine bilinear transformation which map the points $\mathrm{z}=0,1$, ∞ into w $=-5,-1,3$ Find the critical and fixed points of the transformation.
7. (a) Find all values of K such that $\mathrm{f}(\mathrm{z})=e^{x}(\cos k y+i \sin k y)$ is analytic
(b) Find the analytic function whose real part is $\frac{x}{x^{2}+y^{2}}$
(c) Find all the roots of the equation $\cos \mathrm{z}=2$.
8. (a) Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series.
i. about the point $z=0$
ii. about the point $\mathrm{z}=1$

Determine the region of convergence in each case.
iii. if $\mathrm{f}(\mathrm{z})=\frac{\mathrm{z}+4}{(\mathrm{z}+3)(z-1)^{2}}$, find Laurent's series expansions in.
A. $0<|z-1|<4$ and
B. $|z-1|>4$

II B.Tech II Semester Examinations,APRIL 2011 MATHEMATICS FOR AEROSPACE ENGINEERS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Two dice are thrown together. Find the probability that
i. the sum of numbers on their faces is 9
ii. the numbers on their faces are both odd
iii. the numbers on their faces are same.
(b) A distributor receives $20 \%, 15 \%, 35 \%$ and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of $1 \%, 2 \%, 2 \%$ and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? $\quad[8+8]$
2. (a) Evaluate $\int_{c} \frac{e^{z} d z}{\left(z^{2}+\pi^{2}\right)^{2}}$ where e is thercircle $|z| \Rightarrow 4$ by using Cauchy's integral formula.
(b) Evaluate $\int_{c} \frac{z d z}{\left(z^{2}-6 z+25\right)^{2}}$ where C is $|z-(3+4 i)|=9$ using Cauchys integral formula.
3. (a) Let X be a continuous random variable with probability function

Determine a and compute $\mathrm{P}(\mathrm{X} \leq 1.5)$
(b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
i. less than 500 hours
ii. more than 600 hours
iii. between 700 and 800 hours.
4. (a) Find all values of K such that $\mathrm{f}(\mathrm{z})=e^{x}(\cos k y+i \sin k y)$ is analytic
(b) Find the analytic function whose real part is $\frac{x}{x^{2}+y^{2}}$
(c) Find all the roots of the equation $\cos \mathrm{z}=2$.
5. (a) Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series.
i. about the point $\mathrm{z}=0$
ii. about the point $\mathrm{z}=1$

Determine the region of convergence in each case.
iii. if $f(z)=\frac{z+4}{(z+3)(z-1)^{2}}$, find Laurent's series expansions in.
A. $0<|z-1|<4$ and
B. $|z-1|>4$
6. (a) write down the the law of transformation for the tensors
i. $A_{i}^{k j}$
ii. $\mathrm{C}_{m n}$
(b) Define Christoffel symbol of second kind. If $(\mathrm{ds})^{2}=(\mathrm{dr})^{2}+\mathrm{r}^{2}(\mathrm{~d} \theta)^{2}+\mathrm{r}^{2} \sin ^{2} \theta$ $(\mathrm{d} \varphi)^{2}$, then find the value of $[1,22]$ and $[3,13]$
7. (a) When n is a positive integer, Prove that $\frac{d}{d x}\left[x^{n} J_{n}(\mathrm{X})\right]=x^{n} J_{n-1}$ (X) Hence show that $J_{n-1}(\mathrm{X})=\frac{n}{x} J_{n}(\mathrm{X})+J_{n(x)}^{\prime}$
(b) Prove that $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$ Hence show that $J_{n-1}(x)=\frac{n}{x} J_{n}(x)-$ $J_{n(x)}^{\prime}$.

$$
[8+8]
$$

8. (a) Discuss the transformation $\mathrm{w}=\mathrm{e}^{z}$ and show that the region between the real axis and the line $\mathrm{y}=\pi$ in the z - plane is transformed to upper half of the w plane.
(b) Determine bilinear transformation which map the points $\mathrm{z}=0,1$, ∞ into w $=-5,-1,3$ Find the critieal and fixed points of the transformation. $\quad[8+8]$

II B.Tech II Semester Examinations,APRIL 2011 MATHEMATICS FOR AEROSPACE ENGINEERS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Two dice are thrown together. Find the probability that
i. the sum of numbers on their faces is 9
ii. the numbers on their faces are both odd
iii. the numbers on their faces are same.
(b) A distributor receives $20 \%, 15 \%, 35 \%$ and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of $1 \%, 2 \%, 2 \%$ and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? [8+8]
2. (a) When n is a positive integer, Prove that $\frac{d}{d x}\left[x^{n} J_{n}(\mathrm{X})\right]=x^{n} J_{n-1}(\mathrm{X})$ Hence show that $J_{n-1}(\mathrm{X})=\frac{n}{x} J_{n}(\mathrm{X})+J_{n(x)}^{\prime}$
(b) Prove that $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$ Hence show that $J_{n-1}(x)=\frac{n}{x} J_{n}(x)-$ $J_{n(x)}^{\prime}$.

$$
[8+8]
$$

3. (a) write down the the law of transformation for the tensors

(b) Define Christoffel symbol of second kind. If $(d s)^{2}=(d r)^{2}+r^{2}(d \theta)^{2}+r^{2} \sin ^{2} \theta$ $(\mathrm{d} \varphi)^{2}$, then find the value of $[1,22]$ and $[3,13] \quad[8+8]$
4. (a) Let X be a continuous random variable with probability function

$$
\begin{array}{rlrl}
f(x)=a x & & 0 \leq x \leq 1 \\
& =a & & 1 \leq x \leq 1 \\
=-a x+3 a & & 2 \leq x \leq 3 \\
=0 & & \text { elsewhere }
\end{array}
$$

Determine a and compute $\mathrm{P}(\mathrm{X} \leq 1.5)$
(b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
i. less than 500 hours
ii. more than 600 hours
iii. between 700 and 800 hours.
5. (a) Discuss the transformation $\mathrm{w}=\mathrm{e}^{z}$ and show that the region between the real axis and the line $\mathrm{y}=\pi$ in the z - plane is transformed to upper half of the w plane.
(b) Determine bilinear transformation which map the points $\mathrm{z}=0,1$, ∞ into w $=-5,-1,3$ Find the critical and fixed points of the transformation. $\quad[8+8]$
6. (a) Evaluate $\int_{c} \frac{e^{z} d z}{\left(z^{2}+\pi^{2}\right)^{2}}$ where e is the circle $|z|=4$ by using Cauchy's integral formula.
(b) Evaluate $\int_{c} \frac{z d z}{\left(z^{2}-6 z+25\right)^{2}}$ where C is $|z-(3+4 i)|=9$ using Cauchys integral formula.
7. (a) Find all values of K such that $\mathrm{f}(\mathrm{z})=e^{x}(\cos k y+i \sin k y)$ is analytic
(b) Find the analytic function whose real part is $\frac{x}{x^{2}+y^{2}}$
(c) Find all the roots of the equation $\cos \mathrm{z}=2$.
8. (a) Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series.
i. about the point $\mathrm{z}=0$
ii. about the point $\mathrm{z}=1$

Determine the region of convergence in each case
iii. if $\mathrm{f}(\mathrm{z})=\frac{\mathrm{z}+4}{(\mathrm{z}+3)(z-1)^{2}}$, find Laurent's series expansions in.
A. $0<|z-1|<4$ and
B. $|z-1|>4$

