II B.Tech II Semester Examinations,APRIL 2011 KINEMATICS OF MACHINERY
Common to Mechanical Engineering, Production Engineering, Automobile Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Derive an expression for displacement, velocity and acceleration of a circular arc cam with flat faced follower when follower is in contact with flank.
(b) Layout the profile of a cam so that the follower
i. Is to move outwards through 30 mm during 180° of can rotation with cycloidal motion.
ii. Dwell for 20° of the cam rotation.
iii. Returns with uniform velocity during the remaining 160° of the cam rotation.
The base circle diameter of the cam is 28 mm and the roller diameter 8 mm . The axis of the follower is offset by 6 mm to the left. What will be the maximum velocity and acceleration of the follower during the outstroke if the cam rotates at 1500 rpm counter-clockwise?
2. (a) Explain about "selection of automotive transmission gear trains".
(b) Figure 4 b shows a port indicator for a twin-screw ship. It is found that the pointer P remains stationary if the propellers run at the same speed and drive the gears Cand D in the same direction through equal gears A and B. If the number of teeth on G and F are 24 and 50 respectively, find the ratio of the number of teeth on C to that on D .
What will be the speed of the pointer if B runs at 5% faster than A and if the speed of C is 100 rpm ?

Figure 4b
3. (a) What conditions must be satisfied by the steering mechanism of a car in order that the wheels may have a pure rolling motion when rounding a curve? Deduce the relationship connecting the inclinations of the front stub axles to the rear axle, the distance between the pivot centers for the front axles and wheelbase of the car.
(b) A Hooke's joint connects a shaft running at a uniform speed of 1200 rpm to a second shaft, the angle between their axes being 20 degrees. Find the velocity and acceleration of the driven shaft at the instant when the fork of the driving shaft has turned through an angle of 15° from the plane containing the shaft axes. At what positions of the driving shaft during a revolution, the angular velocity of the driven shaft is the same as that determined above? $\quad[8+8]$
4. For the inverted slider-crank mechanism shown in Figure 3, find the angular velocity and angular acceleration of the link BC and the sliding velocity of the block on the link BC . The crank OA is 200 mm long and rotates at $30 \mathrm{rad} / \mathrm{s}$ in the clockwise direction. OB is 600 mm and angle $\mathrm{BOA}=40^{\circ}$.

Figure 3
5. (a) Show that for the scotch yoke mechanism shown in figure 7 uniform rotation of the crank 'b' will produce simple harmonic motion of the slider ' d '.
(b) Name the inversion obtained by fixing link 'b' of the scotch yoke mechanism shown in figure 7. Describe the inversion with neat sketch.
[8+8]

Figure 7
6. (a) What do you mean by undercutting of gears?
(b) A pair of spur gears with involute teeth is to give a gear ratio of $3: 1$. The arc of approach is not to be less that the circular pitch and the pinion is the driver. The pressure angle is 20°. What is the least number of teeth that can be used on each gear?
7. (a) Explain about types of materials used in belt drive.
(b) A 100 mm wide and 10 mm thick belt transmits 5 kW between the shaft centres 1.5 m and the diameter of the smaller pulley is 440 mm . The driving and the driven shafts rotate at 60 rpm and 150 rpm respectively. Find the stress in the belt if the two pulleys are connected by:
i. An open belt, and
ii. A cross belt. The coefficient of friction is 0.22 .
[4+12]
8. In figure 6 shown, the dimensions of the various links are such that $\frac{O A}{O B}=\frac{O E}{O F}=\frac{A C}{B D}=\frac{E C}{F D}$. Show that if C traces any path, then D will describe a similar path and vice-versa.
[16]

Figure 6

II B.Tech II Semester Examinations,APRIL 2011 KINEMATICS OF MACHINERY
Common to Mechanical Engineering, Production Engineering, Automobile Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

* * * *

1. (a) Show that for the scotch yoke mechanism shown in figure 7 uniform rotation of the crank 'b' will produce simple harmonic motion of the slider 'd',
(b) Name the inversion obtained by fixing link ' b ' of the scoteh yoke mechanism shown in figure 7. Describe the inversion with neat sketch.

2. (a) What do you mean by undercutting of gears?
(b) A pair of spur gears with involute teeth is to give a gear ratio of 3:1. The arc of approach is not to be less that the circular pitch and the pinion is the driver. The pressure angle is 20°. What is the least number of teeth that can be used on each gear?
[4+12]
3. For the inverted slider-crank mechanism shown in Figure 3, find the angular velocity and angular acceleration of the link BC and the sliding velocity of the block on the link BC . The crank OA is 200 mm long and rotates at $30 \mathrm{rad} / \mathrm{s}$ in the clockwise direction. OB is 600 mm and angle $\mathrm{BOA}=40^{\circ}$.

Figure 3
4. (a) Explain about types of materials used in belt drive.
(b) A 100 mm wide and 10 mm thick belt transmits 5 kW between the shaft centres 1.5 m and the diameter of the smaller pulley is 440 mm . The driving and the
driven shafts rotate at 60 rpm and 150 rpm respectively. Find the stress in the belt if the two pulleys are connected by:
i. An open belt, and
ii. A cross belt. The coefficient of friction is 0.22 .
5. (a) What conditions must be satisfied by the steering mechanism of a car in order that the wheels may have a pure rolling motion when rounding a curve? Deduce the relationship connecting the inclinations of the front stub axles to the rear axle, the distance between the pivot centers for the front axles and wheelbase of the car.
(b) A Hooke's joint connects a shaft running at a uniform speed of 1200 rpm to a second shaft, the angle between their axes being 20 degrees. Find the velocity and acceleration of the driven shaft at the instant when the fork of the driving shaft has turned through an angle of 15° from the plane containing the shaft axes. At what positions of the driving shaft during a revolution, the angular velocity of the driven shaft is the same as that determined above? $\quad[8+8]$
6. In figure 6 shown, the dimensions of the various links are such that
$\frac{O A}{O B}=\frac{O E}{O F}=\frac{A C}{B D}=\frac{E C}{F D}$. Show that if C traces any path, then D will describe a similar path and vice-versa.
[16]

Figure 6
7. (a) Explain about "selection of automotive transmission gear trains".
(b) Figure 4 b shows a port indicator for a twin-screw ship. It is found that the pointer P remains stationary if the propellers run at the same speed and drive the gears C and D in the same direction through equal gears A and B . If the number of teeth on G and F are 24 and 50 respectively, find the ratio of the number of teeth on C to that on D .
What will be the speed of the pointer if B runs at 5% faster than A and if the speed of C is 100 rpm ?

Figure 4b
8. (a) Derive an expression for displacement, velocity and acceleration of a circular arc cam with flat faced follower when follower is in contact with flonk.
(b) Layout the profile of a cam so that the follower
i. Is to move outwards through 30 mm during 180° of can rotation with cycloidal motion.
ii. Dwell for 20° of the cam rotation.
iii. Returns with uniform velocity during the remaining 160° of the cam rotation.

The base circle diameter of the cam is 28 mm and the roller diameter 8 mm . The axis of the follower is offset 5 y 6 mm to the left. What will be the maximum velocity and acceleration of the follower during the outstroke if the cam rotates at 1500 rpm counter-clockwise?
[4+12]

II B.Tech II Semester Examinations,APRIL 2011 KINEMATICS OF MACHINERY
Common to Mechanical Engineering, Production Engineering, Automobile Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. In figure 6 shown, the dimensions of the various links are such that $\frac{O A}{O B}=\frac{O E}{O F}=\frac{A C}{B D}=\frac{E C}{F D}$. Show that if C traces any path, then D will describe a similar path and vice-versa.

2. (a) Explain about "selection of automotive transmission gear trains".
(b) Figure $4 \boldsymbol{b}$ shows a port indicator for a twin-screw ship. It is found that the pointer P remains stationary if the propellers run at the same speed and drive the gears C and D in the same direction through equal gears A and B. If the number of teeth on G and F are 24 and 50 respectively, find the ratio of the number of teeth on C to that on D .
What will be the speed of the pointer if B runs at 5% faster than A and if the speed of C is 100 rpm ?

Figure 4b
3. (a) Show that for the scotch yoke mechanism shown in figure 7 uniform rotation of the crank 'b' will produce simple harmonic motion of the slider ' d '.
(b) Name the inversion obtained by fixing link ' b ' of the scotch yoke mechanism shown in figure 7. Describe the inversion with neat sketch.

Figure 7
4. (a) Derive an expression for displacement, velocity and acceleration of a circular arc cam with flat faced follower when follower is in contact with flank.
(b) Layout the profile of a cam so that the follower
i. Is to move outwards through 30 mm during 180° of cam rotation with cycloidal motion.
ii. Dwell for 20° of the cam rotation.
iii. Returns with uniform velocity during the remaining 160° of the cam rotation.

The base circle diameter of the cam is 28 mm and the roller diameter 8 mm . The axis of the follower is offset by 6 mm to the left. What will be the maximum velocity and acceleration of the follower during the outstroke if the cam rotates at 1500 rpm counter-clockwise?
5. (a) What conditions must be satisfied by the steering mechanism of a car in order that the wheels may have a pure rolling motion when rounding a curve? Deduce the relationship connecting the inclinations of the front stub axles to the rear axle, the distance between the pivot centers for the front axles and wheelbase of the car.
(b) A Hooke's joint connects a shaft running at a uniform speed of 1200 rpm to a second shaft, the angle between their axes being 20 degrees. Find the velocity and acceleration of the driven shaft at the instant when the fork of the driving shaft has turned through an angle of 15° from the plane containing the shaft axes. At what positions of the driving shaft during a revolution, the angular velocity of the driven shaft is the same as that determined above? [8+8]
6. (a) Explain about types of materials used in belt drive.
(b) A 100 mm wide and 10 mm thick belt transmits 5 kW between the shaft centres 1.5 m and the diameter of the smaller pulley is 440 mm . The driving and the driven shafts rotate at 60 rpm and 150 rpm respectively. Find the stress in the belt if the two pulleys are connected by:
i. An open belt, and
ii. A cross belt. The coefficient of friction is 0.22 .
7. (a) What do you mean by undercutting of gears?
(b) A pair of spur gears with involute teeth is to give a gear ratio of 3:1. The arc of approach is not to be less that the circular pitch and the pinion is the driver. The pressure angle is 20°. What is the least number of teeth that can be used on each gear?
8. For the inverted slider-crank mechanism shown in Figure 3, find the angular velocity and angular acceleration of the link BC and the sliding velocity of the block on the link BC . The crank OA is 200 mm long and rotates at $30 \mathrm{rad} / \mathrm{s}$ in the clockwise direction. OB is 600 mm and angle $\mathrm{BOA}=40^{\circ}$.

Figure 3

II B.Tech II Semester Examinations,APRIL 2011 KINEMATICS OF MACHINERY
Common to Mechanical Engineering, Production Engineering, Automobile Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain about types of materials used in belt drive.
(b) A 100 mm wide and 10 mm thick belt transmits 5 kW between the shaft centres 1.5 m and the diameter of the smaller pulley is 440 mm . The driving and the driven shafts rotate at 60 rpm and 150 rpm respectively. Find the stress in the belt if the two pulleys are connected by:
i. An open belt, and
ii. A cross belt. The coefficient of friction is 0.22

$$
[4+12]
$$

2. (a) Derive an expression for displacement, velocity and acceleration of a circular arc cam with flat faced follower when follower is in contact with flank.
(b) Layout the profile of a cam so that the follower
i. Is to move outwards through 30 mm during 180° of cam rotation with cycloidal motion
ii. Dwell for 20° of the cam rotation.
iii. Returns with uniform velocity during the remaining 160° of the cam rotation.
The base circle diameter of the cam is 28 mm and the roller diameter 8 mm . The axis of the follower is offset by 6 mm to the left. What will be the maximum velocity and acceleration of the follower during the outstroke if the cam rotates at 1500 rpm counter-clockwise?
[4+12]
3. For the inverted slider-crank mechanism shown in Figure 3, find the angular velocity and angular acceleration of the link BC and the sliding velocity of the block on the link BC . The crank OA is 200 mm long and rotates at $30 \mathrm{rad} / \mathrm{s}$ in the clockwise direction. OB is 600 mm and angle $\mathrm{BOA}=40^{\circ}$.

Figure 3
4. (a) Explain about "selection of automotive transmission gear trains".
(b) Figure 4 b shows a port indicator for a twin-screw ship. It is found that the pointer P remains stationary if the propellers run at the same speed and drive the gears C and D in the same direction through equal gears A and B . If the number of teeth on G and F are 24 and 50 respectively, find the ratio of the number of teeth on C to that on D .
What will be the speed of the pointer if B runs at 5% faster than A and if the speed of C is 100 rpm ?
[4+12]

5. (a) What do you mean by undercutting of gears?
(b) A pair of spur gears with involute teeth is to give a gear ratio of $3: 1$. The arc of approach is not to be less that the cireular pitch and the pinion is the driver. The pressure angle is 20°. What, is the least number of teeth that can be used on each gear?
6. In figure 6 shown, the dimensions of the various links are such that $\frac{O A}{O B}=\frac{O E}{O F}=\frac{A C}{B D}=\frac{E C}{F D}$. Show that if C traces any path, then D will describe a similar path and vice-versa.

Figure 6
7. (a) Show that for the scotch yoke mechanism shown in figure 7 uniform rotation of the crank 'b' will produce simple harmonic motion of the slider ' d '.
(b) Name the inversion obtained by fixing link 'b' of the scotch yoke mechanism shown in figure 7. Describe the inversion with neat sketch.

Figure 7
8. (a) What conditions must be satisfied by the steering mechanism of car in order that the wheels may have a pure rolling motion when rounding a curve? Deduce the relationship connecting the inclinations of the front stub axles to the rear axle, the distance between the pivot centers for the front axles and wheelbase of the car.
(b) A Hooke's joint connects a shaft running at a uniform speed of 1200 rpm to a second shaft, the angle between their axes being 20 degrees. Find the velocity and acceleration of the driven shaft at the instant when the fork of the driving shaft has turned through an angle of 15° from the plane containing the shaft axes. At what positions of the driving shaft during a revolution, the angular velocity of the driven shaft is the same as that determined above? [8+8]

