R07

Set No. 2

II B.Tech II Semester Examinations, APRIL 2011 SWITCHING THEORY AND LOGIC DESIGN Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: 07A4EC09

Max Marks: 80

[8+8]

Answer any FIVE Questions All Questions carry equal marks

- ****
- 1. (a) Write the conversion procedures of the flip flops. Convert T flip flop to JK flip flop.
 - (b) Convert SR flip flop to T flip flop.
- 2. Consider the machine whose state table is given below.

PS	NS,Z	
	$\mathbf{X} = 0$	X = 1
А	E,0	D,1
В	F,0	D,0
С	E,0	B,1
D	F,0	В,0
E	С,0	F,1
F	В,0	С,0

Explain the state equivalence determination. When are the 2 states are distinguishable and when are the states are equivalent. [16]

- 3. (a) Implement the INVERTER gate, OR gate and AND gate using
 - i. NAND gate
 - ii. NOR gate
 - (b) Define the gate which is used to compare the similarities in the input bits? Give the truth table and the logic symbol for that gate. [8+8]
- 4. Implement the following functions using 16:1 mux
 - (a) F(w,x,y,z) = (w+x)(w'xy+yz)(xy'+w)
 - (b) F(A,B,C,D) = (AB+C'D+B'D+ABC') [16]
- 5. (a) Differentiate between i. Convert $(1596.675)_{10}$ hexadecimal
 - ii. Convert $(11110.1011)_2$ to decimal
 - iii. Convert $(10110001.01101001)_2$ to octal
 - iv. Convert $(235.0657)_8$ to Binary
 - (b) Obtain the 1's complement and 2's complement of the binary numbers
 - i. 1011011
 - ii. 0110101

Code No: 07A4EC09

$\mathbf{R07}$

Set No. 2

~

[8+8]

iii.	10110		
iv.	00110	[8-	+8]

- 6. Design a combinational logic circuit which performs the Binary multiplication that multiplies two 4-bit numbers. Use ROM to implement this design. [16]
- Design a logic circuit with 4 inputs. The circuit should produce a 1 at its output when the excess-3 equivalent of the input consists of even number of 1's.Use K-map for minimization of the switching function. [16]
- 8. (a) Draw an ASM chart to implement the function of a SR flip flop.

FRST

(b) Differentiate Conventional flow chart and Algorithmic state machine chart.

P

R07

Set No. 4

II B.Tech II Semester Examinations, APRIL 2011 SWITCHING THEORY AND LOGIC DESIGN Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: 07A4EC09

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Design a combinational logic circuit which performs the Binary multiplication that multiplies two 4-bit numbers. Use ROM to implement this design. [16]
- 2. Design a logic circuit with 4 inputs. The circuit should produce a 1 at its output when the excess-3 equivalent of the input consists of even number of 1's.Use K-map for minimization of the switching function. [16]
- 3. (a) Implement the INVERTER gate, OR gate and AND gate using
 - i. NAND gate
 - ii. NOR gate
 - (b) Define the gate which is used to compare the similarities in the input bits? Give the truth table and the logic symbol for that gate. [8+8]
- 4. (a) Draw an ASM chart to implement the function of a SR flip flop.
 - (b) Differentiate Conventional flow chart and Algorithmic state machine chart. [8+8]

5. (a) Differentiate between i. Convert $(1596.675)_{10}$ hexadecimal

- ii. Convert $(11110.1011)_2$ to decimal
- iii. Convert $(10110001.01101001)_2$ to octal
- iv. Convert $(235.0657)_8$ to Binary

(b) Obtain the 1's complement and 2's complement of the binary numbers

- i. 1011011
- ii. 0110101
- iii. 10110
- iv. 00110

[8+8]

- 6. Implement the following functions using 16:1 mux
 - (a) F(w,x,y,z) = (w+x)(w'xy+yz)(xy'+w)
 - (b) F(A,B,C,D) = (AB+C'D+B'D+ABC') [16]
- 7. (a) Write the conversion procedures of the flip flops. Convert T flip flop to JK flip flop.
 - (b) Convert SR flip flop to T flip flop. [8+8]

R07

Set No. 4

8. Consider the machine whose state table is given below.

RS

PS	NS,Z	
	$\mathbf{X} = 0$	X = 1
А	E,0	D,1
В	F,0	D,0
С	E,0	B,1
D	F,0	В,0
Е	С,0	F,1
F	В,0	С,0

Code No: 07A4EC09

Explain the state equivalence determination. When are the 2 states are distinguishable and when are the states are equivalent. [16]

ANK

4

R07

Set No. 1

II B.Tech II Semester Examinations, APRIL 2011 SWITCHING THEORY AND LOGIC DESIGN Common to Electronics And Telematics, Electronics And Communication

Engineering

Time: 3 hours

Code No: 07A4EC09

Max Marks: 80

[8+8]

[16]

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Implement the INVERTER gate, OR gate and AND gate using
 - i. NAND gate
 - ii. NOR gate
 - (b) Define the gate which is used to compare the similarities in the input bits? Give the truth table and the logic symbol for that gate.
- 2. (a) Write the conversion procedures of the flip flops. Convert T flip flop to JK flip flop.
 - (b) Convert SR flip flop to T flip flop.
- 3. Design a combinational logic circuit which performs the Binary multiplication that multiplies two 4-bit numbers. Use ROM to implement this design. [16]
- 4. (a) Draw an ASM chart to implement the function of a SR flip flop.
 - (b) Differentiate Conventional flow chart and Algorithmic state machine chart. $[8\!+\!8]$
- 5. Implement the following functions using 16:1 mux
 - (a) F(w,x,y,z) = (w+x)(w'xy+yz)(xy'+w)(b) F(A,B,C,D) = (AB+C'D+B'D+ABC')
- 6. Consider the machine whose state table is given below.

PS	NS,Z	
	$\mathbf{X} = 0$	X = 1
А	E,0	D,1
В	F,0	D,0
С	E,0	B,1
D	F,0	В,0
Е	С,0	F,1
F	В,0	С,0

Explain the state equivalence determination. When are the 2 states are distinguishable and when are the states are equivalent. [16]

7. (a) Differentiate between i. Convert (1596.675)₁₀ hexadecimal ii. Convert (11110.1011)₂ to decimal

Code No: 07A4EC09

$\mathbf{R07}$

Set No. 1

K

AN

- iii. Convert $(10110001.01101001)_2$ to octal
- iv. Convert $(235.0657)_8$ to Binary

RS

- (b) Obtain the 1's complement and 2's complement of the binary numbers
 - i. 1011011
 - ii. 0110101
 - iii. 10110
 - iv. 00110

[8+8]

8. Design a logic circuit with 4 inputs. The circuit should produce a 1 at its output when the excess-3 equivalent of the input consists of even number of 1's.Use K-map for minimization of the switching function. [16]

R07

Set No. 3

II B.Tech II Semester Examinations, APRIL 2011 SWITCHING THEORY AND LOGIC DESIGN Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: 07A4EC09

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Implement the INVERTER gate, OR gate and AND gate using
 - i. NAND gate
 - ii. NOR gate
 - (b) Define the gate which is used to compare the similarities in the input bits? Give the truth table and the logic symbol for that gate.
 [8+8]
- 2. Consider the machine whose state table is given below.

PS	NS,Z		
	$\mathbf{X} = 0$	$\mathbf{X} = 1$	
А	E,0	D,1	
В	F,0	D,0	
С	E,0	B,1	
D	F,0	В,0	
Е	С,0	F ,1	
F	В,0	Ċ,0	

Explain the state equivalence determination. When are the 2 states are distinguishable and when are the states are equivalent. [16]

- 3. Design a logic circuit with 4 inputs. The circuit should produce a 1 at its output when the excess-3 equivalent of the input consists of even number of 1's.Use K-map for minimization of the switching function. [16]
- 4. Design a combinational logic circuit which performs the Binary multiplication that multiplies two 4-bit numbers. Use ROM to implement this design. [16]
- 5. Implement the following functions using 16:1 mux
 - (a) F(w,x,y,z) = (w+x)(w'xy+yz)(xy'+w)
 - (b) F(A,B,C,D) = (AB+C'D+B'D+ABC') [16]
- 6. (a) Write the conversion procedures of the flip flops. Convert T flip flop to JK flip flop.
 - (b) Convert SR flip flop to T flip flop. [8+8]
- 7. (a) Differentiate between i. Convert (1596.675)₁₀ hexadecimal
 ii. Convert (11110.1011)₂ to decimal

Code No: 07A4EC09

R07

Set No. 3

- iii. Convert $(10110001.01101001)_2$ to octal
- iv. Convert $(235.0657)_8$ to Binary
- (b) Obtain the 1's complement and 2's complement of the binary numbers
 - i. 1011011
 - ii. 0110101
 - iii. 10110
 - iv. 00110

[8+8]

[8+8]

- 8. (a) Draw an ASM chart to implement the function of a SR flip flop.
 - (b) Differentiate Conventional flow chart and Algorithmic state machine chart.
