II B.Tech II Semester Examinations,APRIL 2011 MECHANICS OF FLUIDS Metallurgy And Material Technology

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) What is the disadvantage in having very high meta-centric heights for passenger ships?Explain.
(b) What are mechanical gauges? Name three important mechanical gauges.

$$
[8+8]
$$

2. (a) What is the relation between pressure and density of a compressible fluid for?
i. Isothermal process
ii. Adiabatic process.
(b) A gas is flowing through a horizontal pipe at a temperature of $4^{0} \mathrm{C}$. The diameter of the pipe is 8 cm and at a seetion I in the pipe, the pressure is $30.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). The diameter of the pipe changes from 8 cm to 4 cm at the section II, where pressure is $20.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). Find the velocities of the gas at these sections assuming an isothermal process. Take $\mathrm{R}=287.14 \mathrm{Nm} / \mathrm{Kg} . \mathrm{K}$ and atmosphere pressure $=10 \mathrm{~N} / \mathrm{cm}^{2}$.
[6+10]
3. (a) What is the importance of kinetic energy and momentum correction factors.
(b) A nozzle of diameter 20 mm is fitted to a pipe of diameter 40 mm . Find the force exerted by the nozzle on the water, which is flowing through the pipe at the rate of $1.2 \mathrm{~m}^{3} /$ minute

$$
[7+9]
$$

4. (a) Explain with a neat sketch the boundary layer characteristics when a fluid is flowing over a flat plate.
(b) A thin flat plate 0.3 m wide and 0.6 m long is suspended and exposed parallel to air flowing with a velocity of $3 \mathrm{~m} / \mathrm{sec}$. Calculate drag force on both sides of the plate when the 0.3 m edge is oriented parallel to free stream. Consider flow to be laminar and assume for air kinematic viscosity is 0.18 stokes and density is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
$[10+6]$
5. (a) How the loss of energy at the entrance to the pipe and exit from the pipe is to be determined?
(b) A horizontal pipeline 50 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 100 mm diameter and its diameter suddenly enlarged to 200 mm . The height of the water level in the tank is 10 m above the centre of the pipe. Determine the rate of flow. Take $4 \mathrm{f}=0.04$ for both sections of the pipe and consider minor losses.
$[6+10]$
6. (a) What do you meant by viscous flow? Mention various forces to be considered in Navier Stroke's equation.
(b) Through a horizontal circular pipe of diameter 100 mm and of length 10 m , an oil of dynamic viscocity 0.097 poise and relative density 0.9 is flowing. Calculate the difference of pressure at the two ends of the pipe, if 100 Kg of the oil is collected in a tank in 30 seconds.
7. (a) Define the scale ratio in distorted models and obtain the expression of scale ratio for velocity and scale ratio for area of flow.
(b) The rate of flow in a 120 mm diameter pipe is measured with a venturimeter with a 40 mm diameter throat. When a mercury manometer is connected across the converging section reads 7 mm , the flow rate is $1.5 \mathrm{~kg} / \mathrm{sec}$. What is the coefficient of discharge at that flow rate and what is permanent loss of head? (Specific gravity of mercury $=13.6$).
8. (a) The Velocity components in x and y directions are given as $u=\frac{2 x y^{3}}{3-x^{2} y}$ and $v=x y^{2}-\frac{2 y x^{3}}{3}$. Indicate whether the given velocity distribution is:
i. a possible field of flow.
ii. Not a possible field of f10w.
(b) Is the flow-net analysis applicable to rotational flow? If no, why? $[8+8]$

II B.Tech II Semester Examinations,APRIL 2011 MECHANICS OF FLUIDS Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Define the scale ratio in distorted models and obtain the expression of scale ratio for velocity and scale ratio for area of flow.
(b) The rate of flow in a 120 mm diameter pipe is measured with a venturimeter with a 40 mm diameter throat. When a mercury manometer is connected across the converging section reads 7 mm , the flow rate is $1.5 \mathrm{~kg} / \mathrm{sec}$. What is the coefficient of discharge at that flow rate and what is permanent loss of head? (Specific gravity of mercury $=13.6$).
2. (a) What is the relation between pressure and density of a compressible fluid for?
i. Isothermal process
ii. Adiabatic process.
(b) A gas is flowing through a horizontat pipe at a temperature of $4^{\circ} \mathrm{C}$. The diameter of the pipe is 8 cm and at a section I in the pipe, the pressure is $30.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). The dianeter of the pipe changes from 8 cm to 4 cm at the section II, where pressure is $20.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). Find the velocities of the gas at these sections assuming an isothermal process. Take $\mathrm{R}=287.14 \mathrm{Nm} / \mathrm{Kg} . \mathrm{K}$ and atmosphere pressure $=10 \mathrm{~N} / \mathrm{cm}^{2}$. $\quad[6+10]$
3. (a) What is the disadvantage in having very high meta-centric heights for passenger ships?Explain.
(b) What are mechanical gauges? Name three important mechanical gauges.

$$
[8+8]
$$

4. (a) What do you meant by viscous flow? Mention various forces to be considered in Navier Stroke's equation.
(b) Through a horizontal circular pipe of diameter 100 mm and of length 10 m , an oil of dynamic viscocity 0.097 poise and relative density 0.9 is flowing. Calculate the difference of pressure at the two ends of the pipe, if 100 Kg of the oil is collected in a tank in 30 seconds.
[10+6]
5. (a) Explain with a neat sketch the boundary layer characteristics when a fluid is flowing over a flat plate.
(b) A thin flat plate 0.3 m wide and 0.6 m long is suspended and exposed parallel to air flowing with a velocity of $3 \mathrm{~m} / \mathrm{sec}$. Calculate drag force on both sides of the plate when the 0.3 m edge is oriented parallel to free stream. Consider flow to be laminar and assume for air kinematic viscosity is 0.18 stokes and density is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
$[10+6]$
6. (a) How the loss of energy at the entrance to the pipe and exit from the pipe is to be determined?
(b) A horizontal pipeline 50 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 100 mm diameter and its diameter suddenly enlarged to 200 mm . The height of the water level in the tank is 10 m above the centre of the pipe. Determine the rate of flow. Take $4 \mathrm{f}=0.04$ for both sections of the pipe and consider minor losses.
[6+10]
7. (a) The Velocity components in x and y directions are given as $u=\frac{2 x y^{3}}{3-x^{2} y}$ and $v=x y^{2}-\frac{2 y x^{3}}{3}$. Indicate whether the given velocity distribution is:
i. a possible field of flow.
ii. Not a possible field of flow.
(b) Is the flow-net analysis applicable to rotational flow? If no, why? $[8+8]$
8. (a) What is the importance of kinetic energy and momentum correction factors.
(b) A nozzle of diameter 20 mm is fitted to a pipe of diameter 40 mm . Find the force exerted by the nozzle on the water, which is flowing through the pipe at the rate of $1.2 \mathrm{~m}^{3} /$ minute
[7+9]

II B.Tech II Semester Examinations,APRIL 2011 MECHANICS OF FLUIDS Metallurgy And Material Technology

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) How the loss of energy at the entrance to the pipe and exit from the pipe is to be determined?
(b) A horizontal pipeline 50 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 100 mm diameter andits dianheter suddenly enlarged to 200 mm . The height of the water level in the tank is 10 m above the centre of the pipe. Determine the rate of flow. Take $4 f=0.04$ for both sections of the pipe and consider minor losses. $\quad[6+10]$
2. (a) What is the relation between pressure and density of a compressible fluid for?
i. Isothermal process
ii. Adiabatic process.
(b) A gas is flowing through a horizontal pipe at a temperature of $4^{\circ} \mathrm{C}$. The diameter of the pipe is 8 cm and at a section I in the pipe, the pressure is $30.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). The diameter of the pipe changes from 8 cm to 4 cm at the section II where pressure is $20.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). Find the velocities of the gas at these sections assuming an isothermal process. Take $\mathrm{R}=287.14 \mathrm{Nm} / \mathrm{Kg} . \mathrm{K}$ and atmosphere pressure $=10 \mathrm{~N} / \mathrm{cm}^{2}$. $[6+10]$
3. (a) What do you meant by viscous flow? Mention various forces to be considered in Navier Stroke's equation.
(b) Through a horizontal circular pipe of diameter 100 mm and of length 10 m , an oil of dynamic viscocity 0.097 poise and relative density 0.9 is flowing. Calculate the difference of pressure at the two ends of the pipe, if 100 Kg of the oil is collected in a tank in 30 seconds.
[10+6]
4. (a) The Velocity components in x and y directions are given as
$u=\frac{2 x y^{3}}{3-x^{2} y}$ and $v=x y^{2}-\frac{2 y x^{3}}{3}$. Indicate whether the given velocity distribution is:
i. a possible field of flow.
ii. Not a possible field of flow.
(b) Is the flow-net analysis applicable to rotational flow? If no, why?
5. (a) What is the disadvantage in having very high meta-centric heights for passenger ships?Explain.
(b) What are mechanical gauges? Name three important mechanical gauges.

$$
[8+8]
$$

6. (a) Define the scale ratio in distorted models and obtain the expression of scale ratio for velocity and scale ratio for area of flow.
(b) The rate of flow in a 120 mm diameter pipe is measured with a venturimeter with a 40 mm diameter throat. When a mercury manometer is connected across the converging section reads 7 mm , the flow rate is $1.5 \mathrm{~kg} / \mathrm{sec}$. What is the coefficient of discharge at that flow rate and what is permanent loss of head? (Specific gravity of mercury $=13.6$).
7. (a) Explain with a neat sketch the boundary layer characteristics when a fluid is flowing over a flat plate.
(b) A thin flat plate 0.3 m wide and 0.6 m long is suspended and exposed parallel to air flowing with a velocity of $3 \mathrm{~m} / \mathrm{sec}$. Calculate drag foree on both sides of the plate when the 0.3 m edge is oriented parallel to free stream. Consider flow to be laminar and assume for air kinematic viscosity is 0.18 stokes and density is $1.2 \mathrm{~kg} / m^{3}$.
8. (a) What is the importance of kinetic energy and momentum correction factors.
(b) A nozzle of diameter 20 mm is fitted to a pipe of diameter 40 mm . Find the force exerted by the nozzle on the water, which is flowing through the pipe at the rate of $1.2 \mathrm{~m}^{3} /$ minute

$$
[7+9]
$$

II B.Tech II Semester Examinations,APRIL 2011 MECHANICS OF FLUIDS Metallurgy And Material Technology

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) What is the relation between pressure and density of a compressible fluid for?
i. Isothermal process
ii. Adiabatic process.
(b) A gas is flowing through a horizontal pipe at a temperature of $4^{0} \mathrm{C}$. The diameter of the pipe is 8 cm and at a section I in the pipe, the pressure is $30.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). The diameter of the pipe changes from 8 cm 64 cm at the section II, where pressure is $20.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). Find the velocities of the gas at these sections assuming an isothermal process. Take $\mathrm{R}=287.14 \mathrm{Nm} / \mathrm{Kg} . \mathrm{K}$ and atmosphere pressure $=10 \mathrm{~N} / \mathrm{cm}^{2}$.
2. (a) How the loss of energy at the entrance to the pipe and exit from the pipe is to be determined?
(b) A horizontal pipeline 50 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 100 mm diameter and its diameter suddenly enlarged to 200 mm . The height of the water level in the tank is 10 m above the centre of the pipe. Determine the rate of flow. Take $4 \mathrm{f}=0.04$ for both sections of the pipe and consider minor losses.
[6+10]
3. (a) What is the importance of kinetic energy and momentum correction factors.
(b) A nozzle of diameter 20 mm is fitted to a pipe of diameter 40 mm . Find the force exerted by the nozzle on the water, which is flowing through the pipe at the rate of $1.2 m^{3} /$ minute
$[7+9]$
4. (a) The Velocity components in x and y directions are given as $u=\frac{2 x y^{3}}{3-x^{2} y}$ and $v=x y^{2}-\frac{2 y x^{3}}{3}$. Indicate whether the given velocity distribution is:
i. a possible field of flow.
ii. Not a possible field of flow.
(b) Is the flow-net analysis applicable to rotational flow? If no, why? $[8+8]$
5. (a) What do you meant by viscous flow? Mention various forces to be considered in Navier Stroke's equation.
(b) Through a horizontal circular pipe of diameter 100 mm and of length 10 m , an oil of dynamic viccocity 0.097 poise and relative density 0.9 is flowing. Calculate the difference of pressure at the two ends of the pipe, if 100 Kg of the oil is collected in a tank in 30 seconds.
[10+6]
6. (a) What is the disadvantage in having very high meta-centric heights for passenger ships?Explain.
(b) What are mechanical gauges? Name three important mechanical gauges.

$$
[8+8]
$$

7. (a) Define the scale ratio in distorted models and obtain the expression of scale ratio for velocity and scale ratio for area of flow.
(b) The rate of flow in a 120 mm diameter pipe is measured with a venturimeter with a 40 mm diameter throat. When a mercury manometer is connected across the converging section reads 7 mm , the flow rate is $1.5 \mathrm{~kg} / \mathrm{sec}$. What is the coefficient of discharge at that flow rate and what is permanent loss of head? (Specific gravity of mercury $=13.6$).
$[7+9]$
8. (a) Explain with a neat sketch the boundary layer characteristics when a fluid is flowing over a flat plate.
(b) A thin flat plate 0.3 m wide and 0.6 m long is suspended and exposed parallel to air flowing with a velocity of $3 \mathrm{~m} / \mathrm{sec}$. Calculate drag force on both sides of the plate when the 0.3 m edge is oriented parallel to free stream. Consider flow to be laminar and assume for air kinematic viscosity is 0.18 stokes and density is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
