Code No: 07A50502

 $\mathbf{R07}$

Set No. 2

III B.Tech I Semester Examinations,May 2011 SOFTWARE TESTING METHODOLOGIES Common to Information Technology, Computer Science And Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks *****

1.	Expl	ain the following in the context of node reduction procedu	re:
	(a) (b) (c)	Cross term step Parallel term step Loop term step.	[16]
2.	(a) (b)	Define Transaction & Transaction flow Testing. Why Transactional flows are a natural agenda for system	reviews?
	(c)	Explain the procedure used in Transactional flow testing?	[4+4+8]
3.	(a) (b)	Explain the process of achieving (C_1+C_2) coverage. How do you convert a flow-chart into a flow graph.	
4.	(a)	What are the principles of state testing? Explain its adv vantages.	[8+8] vantages and disad-
	(b)	What is finate state machine and a state?	[8+8]
5.	(a) (b)	Define Software bug. Define Pesticide Paradox and Complexity barrier.	
	(c)	Explain different phases of tester's mental life.	[2+6+8]
6.	What of an	t is a decision table and how does it is useful in testing. E a example.	Explain it with help [16]
7.	(a) (b)	Write an algorithm for Node Reduction (General). Illustrate the applications of Node Reduction algorithm.	[8+8]
8.	(a)	Explain the acronym Closed Off Outside, Open Off Inst domain testing.	ide (COOOOI) in

(b) Explain Span-Compatibility in domains and Interface testing. [8+8]

Code No: 07A50502

R07

Set No. 4

[8+8]

[8+8]

III B.Tech I Semester Examinations, May 2011 SOFTWARE TESTING METHODOLOGIES Common to Information Technology, Computer Science And Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) What are the Restrictions in domain testing?
 - (b) What are the possible domain bugs for a one-dimensional closed boundary?
- 2. (a) Differentiate between good state graphs and bad state graphs.
 - (b) What are principles of state testing? Explain its advantages and disadvantages. [8+8]
- 3. (a) Explain the two goals of Testing?
 - (b) What are the methods which prevent bugs, other than the Testing?
 - (c) Why complete testing is impossible? [4+8+4]
- 4. Minimize the function using Karnaugh Map method $F(A,B,C,D) = \Sigma (1,2,3,8,9,10,11,14) + \Sigma d(7,15)$ [16]
- 5. (a) Explain GUI MAP file
 - (b) Explain abut Usage of WinRunner and JMeter Tools for Functional / Regression Testing. [8+8]
- 6. (a) What are the different kinds of loops.
 - (b) Explain the procedure used in testing loops in path testing. [4+12]
- 7. (a) How can the looping probability of a path expression can be calculated.
 - (b) The Looping Probability of a loop node is P_L and that of non-looping node is $P_A = 1 - P_L$ by considering the following example as shown in figure 1. [8+8]
- 8. (a) Explain the procedure to construct a Data Flow Graph.
 - (b) Construct the Data flow graph for the following problem.
 - i. Given L, t, and d, solve for Z.
 - ii. $\cos(C) = \cos(L) \sin(t)$
 - iii. $\tan(M) = \cot(L) \cos(t)$
 - iv. $\tan(Z+F) = -\sin(L) \tan(t)$
 - v. $\tan(F) = \cos(M) \tan(M+d)$.

Code No: 07A50502

 $\mathbf{R07}$

Set No. 1

III B.Tech I Semester Examinations, May 2011 SOFTWARE TESTING METHODOLOGIES

Common to Information Technology, Computer Science And Engineering Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

1.	(a) What are the advantages of matrix representations?	
	(b) Write about loops in matrix representation.	[8+8]
2.	(a) What are the different Requirement, Features and Functionality bugs	?
	(b) Write about different Structural bugs?	[8+8]
3.	(a) Explain the different two-dimensional Domain bugs.	
	(b) Explain different one-dimensional domain bugs.	[8+8]
4.	(a) Explain how the transaction flow-graph is used in functional testing.	
	(b) Explain Births and mergers in Transactions.	[8+8]
5.	Explain different good and bad state graphs with suitable examples.	[16]
6.	(a) Explain the difference between control flow graph and flow chart?	
	(b) Draw a flow graph for calculating the sum of n given numbers algorithm	n.[8+8]
7.	(a) Explain the usage of regular expression in flow anomaly detection.	
	(b) Write about any two applications of regular expression.	[8+8]
8.	What is decision table and how does it is useful in testing. Explain it with	help of
	an example.	[16]

R07

Set No. 3

Code No: 07A50502

III B.Tech I Semester Examinations, May 2011 SOFTWARE TESTING METHODOLOGIES

Common to Information Technology, Computer Science And Engineering Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1.	(a)	Explain state testing.	
	(b)	Write the tester comments about state graph.	[8+8]
2.	(a)	What are the different operators Used in Boolean Algebra and give tables for them?	tracts
	(b)	State and Explain laws of Booleans Algebra.	[8+8]
3.	(a)	Compare and contrast testing versus Debugging.	
	(b)	Explain the purpose of Testing.	[10+6]
4.	(a)	Explain different Ugly domains.	
	(b)	How programmers and testers treat Ugly Domains.	[8+8]
5.	(a)	Define path predicate expression and Coincidental correctness.	
	(b)	Differentiate C1 coverage and C2 coverage in the factorial algorithm.	[8+8]
6.	(a)	Define du path and definition-clear path segment.	
	(b)	Why All-du-Paths (ADUP) is the strongest data-flow testing strategy?	6+10

- (a) Write a Partitioning Algorithm.(b) Write an algorithm for All Pairs Paths using Matrix Operations? [8+8]
- 8. Using reduction procedure convert flow graph whose links are labeled into a path expression. Explain each step with flow graph as shown in figure 1. [16]

Figure 1:
