III B.Tech I Semester Examinations,May 2011
LINEAR AND DIGITAL IC APPLICATIONS
Common to Bio-Medical Engineering, Electronics And Computer Engineering, Electronics And Telematics, Electronics And Control Engineering

Max Marks: 80
Time: 3 hours

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) What are the advantages of the adjustable voltage regulators over the fixed voltage regulators.
(b) Differentiate between an integrator and a differentiator
2. List and explain any two applications of PLL in detail.
3. (a) What is the need for a parity checker?
(b) Design an odd parity generator, for an 8 bit binary words .
4. (a) Design a first -order low pass filter so that it has a cut off frequency of 2 kHz and pass Band gain of ' 1 '
(b) Convert the 2 kHz low pass filter to a cut off frequency of 3 kHz in part (a)
5. Explain the features of the TTL logic family.
6. Explain with neat block diagram a typical application in which A / D and D / A conversions are employed?
7. What is the voltage at point A and B for the circuit as shown in figure 1 if $V_{1}=$ 5 V and $V_{2}=5.1 \mathrm{~V}$.
[16]

Figure 1:
8. (a) Explain how programming a RAM is different from programming a ROM?
(b) Explain about DRAMs .
[8+8]

III B.Tech I Semester Examinations,May 2011
 LINEAR AND DIGITAL IC APPLICATIONS

Common to Bio-Medical Engineering, Electronics And Computer Engineering, Electronics And Telematics, Electronics And Control Engineering

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

Time: 3 hours
\qquad

1. (a) How many bits are required to design a DAC, that has a resolution of 5 mv ? The ladder has +8 V full scale.
(b) How many resistors are required for an 8 -bit weighted resistor DAC? What are the resistance values, assuming the smallest resistance is R ?
2. (a) Design a First order HPF at a cut off frequency of 3 kHz .
(b) Draw the frequency response of the above filter. [8+8]
3. (a) Explain Astable multivibrator as a square wave oscillator.
(b) With a circuit explain 555 timer as a free running multivibrator. [8+8]
4. (a) Explain why open loop eonfigurations are not used in linear applications?
(b) For an op-Amp, $\mathrm{PSRR}=70 \mathrm{~dB}(\mathrm{~min}), \mathrm{CMRR}=10^{5}$, differential mode gain $\mathrm{A}_{d}=10^{5}$, The output voltage changes by 20v in 4μ seconds. Calculate
i. Numerical vatue of PSRR
ii. CMRR
iii. Slef rate.
5. Implement the following functions using a multiplexer.
(a) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(1,3,5,6)$
(b) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,1,3,4,8,9,15)$
6. Explain Static and dynamic RAM's, their characteristics, advantages, disadvantages, and applications.
7. (a) Draw the wave forms of the comparator for $V_{\text {ref }}>0$ and $V_{\text {ref }}<0$.
(b) For the strain gauge bridge circuit as shown in figure 2, given that $V_{a b}=$ $-V_{d c}\left(\frac{\Delta R}{R}\right)$. Assume that under the strained conditions the resistances $R_{T_{1}}$ and $R_{T_{3}}$ decreases and that of $\mathrm{R}_{T 2}$ and $\mathrm{R}_{T 4}$ increases by the same amount $\Delta R \Omega$ Also $R_{T 1}=R_{T 2}=R_{T 3}=R_{T 4}=R$, under unstrained conditions.
$[4+12]$
8. Explain the MOS and CMOS logic families and give different CMOS characteristics.

Figure 2

III B. Tech I Semester Examinations, May 2011
LINEAR AND DIGITAL IC APPLICATIONS
Common to Bio-Medical Engineering, Electronics And Computer Engineering, Electronics And Telematics, Electronics And Control

Engineering
Max Marks: 80
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain the importance of 555 timer in designing a monostable multivibrator
(b) Design a monostable multivibrator using 555 timer to produce a pulse width of 100 msec .
2. (a) Design a second order high pass filter at a cut off frequency of 1 kHz .
(b) Draw the frequency response of the network in part (a).
3. (a) Write short notes on the following
(i) Level triggering.
(ii) Edge triggering.
(iii) Pulse triggering
(b) Explain the functioning of RS flip-flop using NAND gates.
4. (a) Explain the operation of a monostable multivibrator.
(b) For the integrator circuit as shown in figure 3 the input is a sine wave with a peak-to-peak amplitude of 5 V at 1 kHz . Draw the output voltage waveform if $\mathrm{R}_{1} \mathrm{C}_{F}=0.1 \mathrm{~m}$ s and $\mathrm{R}_{\mathrm{F}}=10 R_{1}$. Assume that the voltage across C_{F} if initially zero.

[6+10]

Figure 3
5. (a) What are the sources of analog errors in an ADC ?
(b) What is meant by differential linearity an ADC?
6. With the help of a neat circuit diagram explain how extremely low propagation in ECL logic can be achieved.
7. Show that the input impedance for the non-inverting amplifier circuit as shown in figure 4 is $R_{i f}=R_{i}\left(1+\frac{z_{1}}{z_{1}+z_{f}}\right) A_{V}$ where R_{i} the input impedance of OPAMP and $\mathrm{R}_{0}=0$ and $A v$ is the gain without feedback.

Figure 4:
8. (a) Explain parity generator and parity checker?
(b) Design a digital comparator for 2-bit numbers?

III B.Tech I Semester Examinations,May 2011
LINEAR AND DIGITAL IC APPLICATIONS
Common to Bio-Medical Engineering, Electronics And Computer Engineering, Electronics And Telematics, Electronics And Control Engineering

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

Time: 3 hours

$$
\star \star * * *
$$

1. (a) With neat circuit diagram explain a master-slave Flip-flop and also draw the timing diagram
(b) Explain about asynchronous Flip Flops.
2. (a) Explain the concept of current mirror circuit by draving the eircuit.
(b) What is an integrated circuit chip? What it consist of ?
3. (a) Explain the current limiting feature of 723 regulator?
(b) Design a differentiator that will differentiate an input signal with $\mathrm{f}_{\max }=100 \mathrm{~Hz}$.
4. For a second order butter worth filter given $C_{2}=C_{3}=0.047 \mu F$;
$R_{2}=R_{3}=3.3 k \Omega, R_{1}=27 k \Omega$, and $R_{F}=15.8 k \Omega$
(a) Determine the lower cutoff frequency f_{L} of the filter.
(b) Draw the frequency response plot of the above filter.
5. With the help of logic circuits explain a Multiplexer and a Demultiplexer also give their circuit symbols and give their applications?
[16]
6. Explain the basic principles used in PLL. What does the feed back system consist. Explain.
7. (a) What are the advantages of R-2R adder type D / A converter over weighted resister type?
(b) In an inverted $\mathrm{R}-2 \mathrm{R}$ ladder, $\mathrm{R}=R_{f}=22 \mathrm{kohms}$ and $V_{R}=12 \mathrm{~V}$. Calculate the total current delivered to the op-amp and the output voltage when the binary input 1110.
8. Compare the various Logic Families.
