III B.Tech I Semester Examinations,MAY 2011
 AUTOMATA AND COMPILER DESIGN

Common to Information Technology, Computer Science And Systems Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

* * * * \star

1. (a) Define regular expression. Give examples.
(b) State \& explain the properties of regular sets.
2. Write short notes on following terms:
(a) dominators.
(b) natural loops.
(c) inner loops.
(d) preheaders.
3. (a) Write a short note on type equivalence
(b) Write a short note on type checking.
4. (a) Write the algorithm for operator-precedence parsing.
(b) Check for LALR(1)
$S \rightarrow A a / b A c / B c / b B a$
A
$B \rightarrow d$.
5. (a) Discuss various object code forms.
(b) Write a C program to find whether a given number is even or not and generate code for it.
6. (a) Write a short note on L-attributed grammars.
(b) What is syntax tree? For the following grammar, write semantic rules to construct syntax tree:
$E \rightarrow E+T / E-T$
$E \rightarrow T$
$T \rightarrow(E)$
$T \rightarrow i d / n u m$
Write the sequence of function calls to construct syntax tree for following expression :
$\mathrm{a}+\mathrm{a} *(\mathrm{~b}-\mathrm{c})+(\mathrm{b}-\mathrm{c}) * \mathrm{~d}$
7. (a) What is the role of parser in compilation process?
(b) Check for LL(1) for following grammar:
prog \rightarrow begin d semi X end
$\mathrm{X} \rightarrow$ d semi X / sY
$\mathrm{Y} \rightarrow$ semi s Y / ϵ
8. (a) Discuss lexical scoping with nested procedures and without nested procedures.
(b) Describe the method to obtain faster access to nonlocals.
[8+8]

III B.Tech I Semester Examinations,MAY 2011
 AUTOMATA AND COMPILER DESIGN

Common to Information Technology, Computer Science And Systems Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) What is dependency graph? What is its significance?
(b) Translate the expression $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}+\mathrm{d})+(\mathrm{a}+\mathrm{b}+\mathrm{c})$ into.
i. Quadruples.
ii. Triples.
iii. Indirect triples.
iv. Syntax tree.

$$
[8+8]
$$

2. (a) Discuss lexical scoping with nested procedures and without nested procedures.
(b) Discuss run-time storage organization for high level languages. [8+8]
3. Write short notes on following terms:
(a) Derivation.
(b) Ambiguity.
(c) Parse tree
(d) LL(k) gammar.
4. (a) Write about type checking. Consider following C declarations:
typedef struct
\{ int a, b;
\}CELL, ${ }^{*}$ PCELL;
CELL foo[100];
PCELL bar(x,y)
int x ;
CELL y \{.. $\}$
Write type expressions for the types of foo and bar.
(b) What is meant by structural equivalence? Assume the following definitions:
type link $=\uparrow$ cell;
var next:link;
last:link;
p: \uparrow cell;
q,r: \uparrow cell;
Which among the following expression are structurally equivalent? Which are name equivalent?
i. link.
ii. pointer(cell).
iii. pointer(link).
iv. pointer(record(info*integer) $)($ next*pointer(cell))).
5. (a) Write a C program to find whether a given number is even or not and generate code for it.
(b) Write a short note on code generating algorithms.
6. (a) Give an algorithm to compute reaching definitions interprocedurally.
(b) What is peephole? What peephole optimizations can be performed on code.

$$
[8+8]
$$

7. (a) Consider following grammar:
$E \rightarrow E+T / T$
$T \rightarrow T * F / F$
$F \rightarrow(E) / i d$
Construct SLR parsing table \& find whether "id*id 4 id" is accepted by above grammar or not.
(b) Compare \& contrast LR \& LL parsers.
8. (a) Which of the following are regula sets?
i. $a^{n^{2}}$
ii. $0^{2^{n}}$
iii. $0^{m 04}+n$
iv. $a^{n} b^{n}$
(b) List out the properties of regular sets.

III B.Tech I Semester Examinations,MAY 2011
 AUTOMATA AND COMPILER DESIGN

Common to Information Technology, Computer Science And Systems Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Write short notes on following:
(a) Activation record.
(b) Dynamic scope.
(c) Call by copy restore.
(d) Access links.
2. (a) State \& prove CFL pumming lemma.
(b) What is Chomsky normal form? Explain with an example.
3. (a) Discuss various object code forms.
(b) Explain the register allocation by graph coloring.
4. (a) Write an algorthm for induction variable elimination.
(b) What are reducible flow graphs? Explain with examples.
5. (a) State the rules to compute $\operatorname{FIRST}(\mathrm{X}) \& \operatorname{FOLLOW}(\mathrm{X})$. Give examples.
(b) Why do we need to left factor a grammar? Left factor the following grammar. $S \rightarrow i C t S e S / i c t S$
(c) What is the role of parser in compilation process?
6. (a) How are the shift-reduce conflicts resolved in bottom-up parsing.
(b) Compare CLR \& LALR parsing.
7. (a) Describe in English the sets denoted by the following regular expressions:
i. $\left[00+11+(01+10)(00+11)^{*}(01+10)^{*}\right]$
ii. $10+(0+11) 0^{*} 1$
(b) Prove following identities for regular expressions r, s \& t. Here $r=s$ means $\mathrm{L}(\mathrm{r})=\mathrm{L}(\mathrm{s})$
i. $\left(\mathrm{r}^{*} \mathrm{~s}^{*}\right)^{*}=(\mathrm{r}+\mathrm{s})^{*}$
ii. $(\mathrm{r}+\mathrm{s})+\mathrm{t}=\mathrm{r}+(\mathrm{s}+\mathrm{t})$
8. (a) Compare and contrast the quadruples, triples \& indirect triples.
(b) Write the translation schemes for addressing array elements for following grammar:
$S \rightarrow L:=E$
$E \rightarrow E+E /(E) / L$
$L \rightarrow$ Elist]/id
Elist \rightarrow Elist, E
Elist \rightarrow id [E

III B.Tech I Semester Examinations,MAY 2011
 AUTOMATA AND COMPILER DESIGN

Common to Information Technology, Computer Science And Systems Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Explain recursive descent parsing in detail.
(b) State the rules to compute $\operatorname{FIRST}(\mathrm{X}) \& \operatorname{FOLLOW}(\mathrm{X})$.
2. (a) Discuss various storage allocation strategies.
(b) Distinguish between control link and access link.
3. (a) Explain handle pruning process. Give examples.
(b) How are the shift-reduce conflicts resolved in bottom-up parsing. [8+8]
4. (a) Which of the following are regular sets?
i. $\mathrm{a}^{\mathrm{n}^{2}}$
ii. $0^{2 \mathrm{n}}$.
(b) What is the significance of grouping the phases into front end \& back end.
5. (a) What is Chomsky normal form? Explain with an example.
(b) Consider following grammar,
$E \rightarrow E+E / E * E /$ literal/num/id/Emod $E / E[E] / * E /$ float Write semantic rules to compute type of expression.
6. (a) Discuss various object code forms.
(b) Write a short note on code generating algorithms.
7. (a) Show the effect of break-statement on gen and kill sets with an example.
(b) Discuss loop optimation techniques.
8. (a) Consider following grammar:
$S \rightarrow L . L$
$L \rightarrow L B$
$L \rightarrow B$
$B \rightarrow 0 / 1$
It derives all floating binary numbers. Write the semantic rules for the floating binary number which is converted into a floating decimal number.
(b) Translate the expression $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}+\mathrm{d})+(\mathrm{a}+\mathrm{b}+\mathrm{c})$ into:
i. Quadruples.

Code No: 07A51201
R07
ii. Triples.
iii. Indirect triples.
iv. Syntax tree.

