R07

III B.Tech I Semester Examinations,May 2011 AERODYNAMICS-II Aeronautical Engineering

Time: 3 hours

Code No: 07A52102

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Describe the various forces and moments on an aircraft that can be measured in wind tunnel.
 - (b) What is a wind tunnel? Describe a subsonic wind tunnel. [8+8]
- 2. (a) Explain in detail about any six nondimensional parameters and give their significance.
 - (b) What are π parameters (Pi parameters)? Explain its significance in dimensional analysis? [8+8]
- 3. (a) Explain about intersection of shock waves with neat sketches.
 - (b) Write a short notes on
 - i. Attached shock
 - ii. Incident shock, [8+8]
- 4. (a) Derive velocity potential equation for a two-dimensional, steady, irrotational, isentropic flow.
 - (b) Explain what do you understand by linearization. [8+8]
- 5. Consider a subsonic flow with an upstream Mach number of M_{∞} . This flow moves over a wavy wall with a contour given by $y_w = h\cos(2\pi x/L)$, where y_w is the ordinate of the wall, h is the amplitude and L is the wavelength. Assuming h is small and using small perturbation theory derive an equation for velocity potential and surface pressure coefficient. [16]
- 6. (a) Contrast the boundary conditions in supersonic and hypersonic flows at high altitudes.
 - (b) A compression corner of angle 10^0 is at sea-level conditions. Calculate x & y components of velocity of air after the shock, if flow Mach number is 25. Assume the Mach number is very large. [8+8]
- 7. Explain Choked flow condition with appropriate sketches. Write about your understanding of shock wave and its different types with a suitable sketch. [16]
- 8. Derive energy equation for a 3 dimensional inviscid, compressible flow. [16]

R07

III B.Tech I Semester Examinations, May 2011 AERODYNAMICS-II Aeronautical Engineering

Time: 3 hours

Code No: 07A52102

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. An oblique shock wave at angle of 35⁰ occurs at the leading edge of a symmetrical wedge. Air has mach number of 2.0, pressure and temperature of 10 bar and 310 K respectively upstream of this wave. Determine the wedge angle, pressure ,temperature and Mach number downstream of the wave. [16]
- 2. (a) Explain significance of pressure coefficient (C_p) in compressible flows using suitable correlations.
 - (b) Obtain an approximate expression for pressure coefficient (Cp) consistent with linear theory and valid for small perturbations for a compressible flow. [6+10]
- 3. (a) Describe the differences between subsonic and supersonic wind tunnels.
 - (b) Explain the continuity equation for a compressible flow. Explain how supersonic flow is generated in a wind tunnel. [8+8]
- 4. Explain flow in the divergent part of the super sonic C.D Nozzle for various inlet parameters and back pressures. [16]
- 5. Derive Momentum equation in integral form for a three dimensional flow. [16]
- 6. (a) What is Similarity role and enumerate its significance with the help of an example? How do you define similarity of flows?
 - (b) Explain in detail about various methods for measuring pressures on a model in a wind tunnel. [8+8]
- 7. (a) Explain your understanding by air-divergence Mach number and Area rule.
 - (b) Explain about supercritical airfoil with relevant plots. [8+8]
- 8. (a) What is the change in entropy for flow past an expansion corner? Explain your answer.
 - (b) In a hypersonic wind tunnel, the flow Mach number is 15 and operating pressure is 2 atm. If the flow encounters an expansion corner of 6⁰, calculate the Mach number and pressure after the expansion. Assume that Mach number is very large. [8+8]

R07

Er

III B.Tech I Semester Examinations, May 2011 AERODYNAMICS-II Aeronautical Engineering

Time: 3 hours

Code No: 07A52102

Max Marks: 80

[16]

16

[7+9]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Discuss briefly with neat sketches about the following
 - (a) Thin Shock Layer
 - (b) Entropy layer
 - (c) Low density flows
 - (d) High Temperature flows and
 - (e) Viscous interaction
- 2. Derive $\theta \beta$ -M relation.
- 3. (a) Explain, with examples, the differences between internal and external balances.
 - (b) Write short notes on
 - i. Wall interference
 - ii. Correction to drag coefficient for the error arising from upflow
 - iii. Two dimensional wing

4. Explain about Prandtl-Glauert compressibility corrections. [16]

- 5. (a) Explain about under and over expansion in Convergent-Divergent nozzle.
 - (b) Air flows with $T_1 = 250$ K, $P_1 = 3$ bar, $P_2 = 3.4$ bar and the cross-sectional area $A_1 = 0.4$ m, the flow is isentropic to a section where $A_2 = 0.3$ m. Determine the temperature at the section A_2 . Also detrmine the deflection angle, Mach Number and the temperature of the gas at the throat section [8+8]
- 6. What do you mean by isentropic process. Derive general isentropic relations for static temeperature rise, static pressure rise and Mach number rise across a gas flow.. [16]
- 7. (a) Discuss about the physical aspects of conical flows and with a schematic illustrate supersonic flow over a cone.
 - (b) Enumerate steps involved in the numerical procedure to obtain numerical solution of supersonic flow over a right circular cone. [6+10]
- 8. (a) Write a short note on
 - i. Measurement errors
 - ii. Horizontal buoyancy

Code No: 07A52102

R07

Set No. 1

- iii. Flow angularity
- (b) Explain in detail about variation of velocity & pressure in a wind tunnel depending on the area of cross section. [9+7]

RSAME

R07

III B.Tech I Semester Examinations,May 2011 AERODYNAMICS-II Aeronautical Engineering

Time: 3 hours

Code No: 07A52102

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Explain briefly about what happens to flow parameters in the Convergent-Divergent nozzle of a supersonic wind tunnel before entering a diffuser. [16]
- 2. (a) Mention and explain briefly the properties of hypersonic flows with neat sketches.
 - (b) Contrast supersonic & hypersonic flows. With neat sketches explain using the example of supersonic and hypersonic flow over a wedge. [8+8]
- 3. (a) Describe in detail about various pressure measuring devices.
 - (b) What are various measurement errors encountered during the testing a model and how to capture and minimize these errors? [8+8]
- 4. Write a note on the following
 - (a) Perturbation
 - (b) Compressibility
 - (c) Area rule
 - (d) Supercritical airfoil

[4x4]

- 5. (a) Discuss the variation of linearized pressure coefficient (C_p) with Mach number (M_{∞}) with a suitable plot.
 - (b) A uniform supersonic stream with M₁= 3.0, P₁= 1 atm and T₁= 288 K encounters a compression corner which deflects the stream by an angle θ= 20°. Calculate the shock wave angle and P₂, T₂, M₂, P₀₂ and T₀₂ behind the shock wave.
 [6+10]
- 6. (a) Obtain an expression which relates pressure, density, temperature for an isentropic process.
 - (b) Consider a Boeing 747 flying at a standard altitude of 900m. The pressure at this point on the wing is $3N/mm^2$ assuming isentropic flow over the wing, calculate the temperature at this point . [8+8]
- 7. (a) Explain in detail, how the effects of struts are eliminated while measuring the drag on a model in a subsonic wind tunnel.
 - (b) Explain the differences between platform, yoke and pyramid balances. [8+8]
- 8. What do you understand by regular reflection from a solid boundary. Enumerate the significance of incident shock and reflected shock with appropriate sketches. [16]

www.firstranker.com

Code No: 07A52102

R07

FRANKER