III B.Tech II Semester Examinations,APRIL 2011 COMPILER DESIGN
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) What is the use of Symbol table in compilation process? List out various attributes stored in the symbol table.
(b) Explain different schemes of storing name attribute in symbol table. $[8+8]$
2. Explain how redundant sub expression elimination and dead code elimination techniques are applied across different blocks with examples,
3. (a) What is the string generated by the grammar $A \rightarrow(A) A$
(b) Explain the basic method of $\operatorname{LL}(1)$ parsing and hence explain how very simple grammar generates strings of balanced parentheses.
4. (a) Let A be a $10 * 20$ array with low $1-$ low $2=1$. Therefore $\mathrm{n} 1=10$ and $\mathrm{n} 2=20$. Take w to be 4. Give the annotated parse tree for the assignment $\mathrm{x}:=\mathrm{A}[\mathrm{y}$, z].
(b) Give the semantic rules for declarations in a procedure?
5. Explain the following terms
(a) Register descriptor.
(b) Address descriptor.
(c) Instruction costs
(d) Flow graphs.
6. Explain the input buffer scheme for scanning the source program. How the use of sentinels can improve its performance? Describe in detail.
7. Write importance of loop optimization technique. With example explain loop unrolling and frequency reduction .
8. (a) Explain LALR parsing, justify how it is efficient over SLR parsing
(b) What is phrase level error recovery?

III B.Tech II Semester Examinations,APRIL 2011 COMPILER DESIGN
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Explain about global data flow analysis? List the data flow equations for reaching definitions for structured programs
2. Explain how storage allocation is done for arrays, strings and records
3. (a) Construct SLR parsing table for the following grammar.
$\mathrm{S}->\mathrm{AS} \mid \mathrm{b}$
$\mathrm{A}->\mathrm{SA} \mid \mathrm{a}$
(b) What are the actions of shift reduce parse.
4. (a) Give a, c are 2 dimensional real arrays and b is a 2 dimensional integer array and i, j are integer variables, write the 3 -address code for the following program fragment
for $(i=0, j=0 ; i<10 A D D j<10 ; i++, j++)$
\{
$C[i][j]=a[i][j]+b[i][j]$;
\}
(b) What is a symbol table? Describe any two methods of implementing a symbol table.
$[12+4]$
5. (a) Consider the following fragment of C code:
float i, j;
$\mathrm{i}=\mathrm{i} * 70+\mathrm{j}+2$;
Write the output at all phases of the compiler for the above 'C' code.
(b) Write short notes on: input buffering. [8+8]
6. (a) Explain the reasons for separating lexical analysis phase from syntax analysis.
(b) Eliminate ambiguities from the following grammar.

$$
\begin{align*}
& \mathrm{S}->\mathrm{iEtSeS}|\mathrm{iEtS}| \mathrm{a} \\
& \mathrm{E}->\mathrm{b}|\mathrm{c}| \mathrm{d} . \tag{8+8}
\end{align*}
$$

7. What is a DAG? Explain role of DAG in optimization with example.
8. What is local and global optimization? Explain with example any three local optimization techniques.

III B.Tech II Semester Examinations,APRIL 2011 COMPILER DESIGN
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Explain SDD for Boolean expressions with and without back patching
(b) Write the SDD for "Do - While" statement and explain?
2. (a) Consider the grammar given below.
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E}-\mathrm{E}| \mathrm{E}^{*} \mathrm{E}|\mathrm{E} / \mathrm{E}| \mathrm{a} \mid \mathrm{b}$
obtain left most and right most derivation for the string $a+b^{*} a+b$.
(b) Explain back tracking with example.
3. (a) Write about the issues in the design of code generator.
(b) Write about target code forms. Explain how the instruction forms effect the computation time.
4. (a) What is local and globaloptimization?
(b) Consider the following part of code. int main() \{ int $n, k=0$.
scanf("\% d" \&n);
for $(\mathrm{i}=2 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
\{
if(($\mathrm{n} \% \mathrm{i}$) $==0$) break;
\}
$\mathrm{k}=1$;
if($\mathrm{i}==\mathrm{n}$)
printf("number is prime");
else
printf("number is not prime");
\}
i. Identify the basic blocks in the given program.
ii. Draw the domination tree for the program
5. Explain shift-reduce parsing with stack implementation.
6. List the various data structures that can be used to organize a symbol table? Compare the performance.
7. Explain the formulation of data flow equations for reaching definition in structured programs. Describe the procedure to compute in and out values.
8. Explain with one example how LEX program perform lexical analysis for the following patterns in ' C ': identifier, comments, numerical constants, arithmetic operators.

III B.Tech II Semester Examinations,APRIL 2011 COMPILER DESIGN
 Computer Science And Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Explain with example the various techniques in loop optimization.
2. (a) What is yaac?
(b) Explain error recovery in yaac?
(c) Explain yacc grammar rules?
3. (a) Construct predictive parse table for the following grammar.
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow$ T_F|F
$\mathrm{F} \rightarrow \mathrm{F}-\mathrm{a} \mid \mathrm{b}$
(b) What are the limitations of recursive descent parser.
4. (a) Describe the steps involved for creating a lexical analyzer with Lex.
(b) Explain the boot strapping process. What is the advantage of using this process?
5. (a) Differentiate between L-attributed and S-attributed grammars.
(b) Define S-attributed and L-attributed definition.
6. (a) Explain the importance of each attribute stored in symbol table?
(b) Compare the performance of different symbol table organization. [10+6]
7. Write the iterative algorithm for reaching definition. Compute in and out for the following figure 1 .
8. Generate the code for the following C statements using its equivalent three address code.
(a) $\mathrm{a}=\mathrm{b}+\mathrm{c}$
(b) $x=a /(b+c) d^{*}(e+f)$
(c) $* \mathrm{~A}=\mathrm{p}$
(d) $\mathrm{A}=\mathrm{B}+\mathrm{C}$.

Figure 1:

