R07

Set No. 2

III B.Tech II Semester Examinations, APRIL 2011 COMPILER DESIGN Computer Science And Engineering

Time: 3 hours

Code No: 07A60502

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) What is the use of Symbol table in compilation process? List out various attributes stored in the symbol table.
 - (b) Explain different schemes of storing name attribute in symbol table. [8+8]
- 2. Explain how redundant sub expression elimination and dead code elimination techniques are applied across different blocks with examples. [16]
- 3. (a) What is the string generated by the grammar $A \rightarrow (A)A$
 - (b) Explain the basic method of LL(1) parsing and hence explain how very simple grammar generates strings of balanced parentheses. [8+8]
- 4. (a) Let A be a 10 * 20 array with low1 = low2 = 1. Therefore n1=10 and n2=20. Take w to be 4. Give the annotated parse tree for the assignment x : = A [y , z].

(b) Give the semantic rules for declarations in a procedure ? [6+10]

- 5. Explain the following terms.
 - (a) Register descriptor.
 - (b) Address descriptor.
 - (c) Instruction costs
 - (d) Flow graphs. [16]
- 6. Explain the input buffer scheme for scanning the source program. How the use of sentinels can improve its performance? Describe in detail. [16]
- 7. Write importance of loop optimization technique. With example explain loop unrolling and frequency reduction . [16]
- 8. (a) Explain LALR parsing, justify how it is efficient over SLR parsing
 - (b) What is phrase level error recovery? [14+2]

R07

Set No. 4

III B.Tech II Semester Examinations, APRIL 2011 COMPILER DESIGN Computer Science And Engineering

Time: 3 hours

Code No: 07A60502

Max Marks: 80

[10+6]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Explain about global data flow analysis? List the data flow equations for reaching definitions for structured programs [16]
- 2. Explain how storage allocation is done for arrays, strings and records? [16]
- 3. (a) Construct SLR parsing table for the following grammar. S- > AS|b A- > SA|a
 - (b) What are the actions of shift reduce parse.
- 4. (a) Give a, c are 2 dimensional real arrays and b is a 2-dimensional integer array and i, j are integer variables, write the 3-address code for the following program fragment for (i = 0, j = 0; i < 10ANDj < 10; i + +, j + +)

{ C[i][j]=a[i][j]+b[i][j]; }

- (b) What is a symbol table? Describe any two methods of implementing a symbol table. [12+4]
- 5. (a) Consider the following fragment of C code:
 - float i, j; i = i * 70 + j + 2;

Write the output at all phases of the compiler for the above 'C' code.

- (b) Write short notes on: input buffering. [8+8]
- 6. (a) Explain the reasons for separating lexical analysis phase from syntax analysis.
 - (b) Eliminate ambiguities from the following grammar.

$$S - > iEtSeS|iEtS|a$$

$$E - > b|c|d.$$
[8+8]

- 7. What is a DAG? Explain role of DAG in optimization with example. [16]
- 8. What is local and global optimization? Explain with example any three local optimization techniques. [16]

R07

Set No. 1

III B.Tech II Semester Examinations, APRIL 2011 COMPILER DESIGN Computer Science And Engineering

Time: 3 hours

Code No: 07A60502

Max Marks: 80

[8+8]

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain SDD for Boolean expressions with and without back patching
 - (b) Write the SDD for "Do While" statement and explain?
- 2. (a) Consider the grammar given below. $E \rightarrow E + E | E - E | E^*E | E/E | a | b$ obtain left most and right most derivation for the string $a+b^*a+b$.
 - (b) Explain back tracking with example.
- 3. (a) Write about the issues in the design of code generator.
 - (b) Write about target code forms. Explain how the instruction forms effect the computation time. [8+8]
- 4. (a) What is local and global optimization?
 - (b) Consider the following part of code. int main() { int n,k=0; scanf("%d",&n); for(i=2; i<n;i++) {

if((n % i) == 0) break;

} k=1;

if(i==n)

printf("number is prime");

- else
- printf("number is not prime");
- }
 - i. Identify the basic blocks in the given program.
- ii. Draw the domination tree for the program [6+5+5]
- 5. Explain shift-reduce parsing with stack implementation. [16]
- 6. List the various data structures that can be used to organize a symbol table? Compare the performance. [16]
- 7. Explain the formulation of data flow equations for reaching definition in structured programs. Describe the procedure to compute in and out values. [16]

Code No: 07A60502

R07

Set No. 1

8. Explain with one example how LEX program perform lexical analysis for the following patterns in 'C': identifier, comments, numerical constants, arithmetic operators. [16]

RANKER

 $\mathbf{R07}$

III B.Tech II Semester Examinations, APRIL 2011 COMPILER DESIGN Computer Science And Engineering

Time: 3 hours

Code No: 07A60502

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks * * * * *

1.	Explain with example the various techniques in loop optimization.	[16]
2.	(a) What is yaac?(b) Explain error recovery in yaac?(c) Explain yacc grammar rules?	[2+10+4]
3.	(a) Construct predictive parse table for the following grammar. $E \rightarrow E + T T$ $T \rightarrow T_F F$ $F \rightarrow F_ a b$	
	(b) What are the limitations of recursive descent parser.	[8+8]
4.	(a) Describe the steps involved for creating a lexical analyzer with Lex.	
	(b) Explain the boot strapping process. What is the advantage of u process?	using this [8+8]
5.	(a) Differentiate between L-attributed and S-attributed grammars.	
	(b) Define S-attributed and L-attributed definition.	[10+6]
6.	(a) Explain the importance of each attribute stored in symbol table?	
	(b) Compare the performance of different symbol table organization.	[10+6]
7.	Write the iterative algorithm for reaching definition. Compute in and or following figure 1.	ut for the [16]
8.	Generate the code for the following C statements using its equivalent three code.	e address
	(a) $a = b + c$	
	(b) $x = a/(b+c) d^{*}(e+f)$	
	(c) *A=p	

(d) A=B+C. [16]

Code No: 07A60502

Figure 1: