R07

III B.Tech II Semester Examinations, APRIL 2011 HEAT TRANSFER IN BIOPROCESSES **Bio-Technology**

Time: 3 hours

Code No: 07A62303

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Discuss how the geometric parameter of the pipe, physical properties of the fluid and its velocity influence the heat transfer coefficient in the fluid flow in a pipe. [16]
- 2. What are the various modes of heat transfer through solids, liquids and gases? Explain in detail. [16]
- 3. Obtain an expression for the quantity of heat flow through a flat slab with a neat sketch. [16]
- 4. A square plate, 40 cm x 60 cm, is at 140°Cand is exposed to air at 20°C. Find the heat loss from the plate if
 - (a) the plate is kept vertical
 - (b) the plate is placed horizontally. Find the percentage change in heat flow due to the change in position. [8+8]
- 5. 1.5 kg/s of a solution containing 1.0 wt% solids is fed to a single effect evaporator at 303K. It is to be concentrated to a solution of 1.5 wt% of solids. Evaporation takes place at atmospheric pressure. Saturated steam is supplied at 205 kN/m^2 for heating. If the overall heat transfer coefficient is $3000 \text{ W/m}^2\text{K}$, what is the surface area required?. Suitable assumptions may be made, if necessary. Saturation temperature of steam at $205 \text{ kN/m2} = 125^{\circ}C$. Latent heat of vaporization = 2200kJ/kg. [16]
- 6. (a) In a parallel flow double pipe heat exchanger, the hot fluid enters the heat exchanger at 90 ${}^{0}C$ and leaves at 50 ${}^{0}C$, while the cold fluid enters the heat exchanger at $20^{\circ}C$ and leaves at $40^{\circ}C$. Calculate the LMTD.
 - (b) In a counter current double pipe heat exchanger, the hot fluid enters at $200^{\circ}C$ and leaves at 100 ${}^{0}C$, while the cold fluid enters the heat exchanger at 20 ${}^{0}C$ and leaves at 80 ${}^{0}C$. Calculate the LMTD. [8+8]
- 7. Estimate the heat flux which would occur in nucleate boiling of saturated water at 477[°]k upon platinum wire as submerged heating surface (491[°]k). Thermal properties of water

 $P = 968 \text{ kg/m}^3$ $k = 0.58 \text{ w/m}^{\circ}\text{C}$ $Cp = 4180 \text{ j/kg}^{0}C$ $\mu = 1.14 \times 10^{-6} \text{N.sec/m}^2$

[16]

www.firstranker.com

Code No: 07A62303

 $\mathbf{R07}$

Set No. 2

8. A fermentation medium contains initial spores concentration of 8.5X10¹⁰. The medium is sterilized chemically at 120^oC, and the spore density was noted with the progress of time, the data are as follows.

or unic. unc data arc	as ionows.					
Time(min)	0	5	10	15	20	30
Spore density (m^{-3})	$8.5 X 10^{10}$	$4.23 \text{x} 10^9$	$6.2 X 10^{7}$	$1.8 X 10^{6}$	$4.5 X 10^{4}$	32.5

- a) Find the thermal death kinetics
- b) With the above data, calculate the inactivation factor at 40 min

[16]

* * * * * RSI

R07

III B.Tech II Semester Examinations, APRIL 2011 HEAT TRANSFER IN BIOPROCESSES **Bio-Technology**

Time: 3 hours

Code No: 07A62303

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Derive Colburn analogy and State its significance and Sketch temperature and velocity profile of free convection of vertical wall. [16]
- 2. (a) Condensing equipments are always designed for film-wise condensation why?
 - (b) Discuss the regimes of boiling heat transfer with the help of a boiling curve. Why are heat transfer coefficients lowered in film boiling as compared to nucleate boiling? [8+8]
- 3. What do you understand by black body and grey body? Explain. [16]
- 4. What is dimensional analysis? Explain any one method of dimensional analysis? 16
- 5. How evaporation different from other unit operations like drying, crystallization and distillation? Explain in detail. [16]
- 6. A cylindrical tube has inner diameter of 20 mm and outer diameter of 30mm. find out the rate of heat flow from tube of length 5 m if inner surface is at 373 K (100°C) and outer surface is at 308 K (35° C). Take the thermal conductivity of tube material as 0.291 W/(m.K). [16]
- 7. Calculate the heat transfer area required for a 1-1 shell and tube heat exchanger which is used to cool 55000 kg/hr of alcohol from $66^{0}C$ to $40^{0}C$ using 40,000 kg/hr of water entering at 5° C. U = 580 W/m² K, consider
 - (a) counter flow
 - (b) parallel flow.
 - C_P water = 4.18 X 10³ J/kg K $C_{\mathbf{P}}$ alcohol = 3.76 X10³ J/kg K. [16]
- 8. The thermal death kinetic data of bacillus stearothermophilus are as follows at three different temperatures.

$Temp, {}^{0}C$	115	120	125
Kd,min ⁻¹	0.035	0.112	0.347

- (a) Calculate the activation energy and Arhenius constant for sterilization
- (b) Find Kd at $130^{\circ}C$.

www.firstranker.com

R07

III B.Tech II Semester Examinations, APRIL 2011 HEAT TRANSFER IN BIOPROCESSES **Bio-Technology**

Time: 3 hours

Code No: 07A62303

Max Marks: 80

[8+8]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Derive an expression for the temperature profile in a thick walled cylinder during heat transfer by conduction under steady state. [16]
- 2. (a) What is Sieder Tate equation and why is it used?
 - (b) What is the significance of jH factor?
- 3. Derive an expression for determining the rate of heat transfer through the thick wall of a hollow cylinder. Also, find the temperature profile and its nature. State your assumptions clearly. [16]
- 4. Describe how effective is plate heat exchanger for continuous sterilization of medium. Is plate heat exchanger useful for Batch sterilization explain? [16]
- 5. Show that the Heat transfer coefficient for film type condensation over a vertical $\mathbf{1}/4$ plate is $h = 0.943 \left[\frac{k_f^3 p^2 f g \lambda}{\Delta T_0 L \mu_f} \right]$ [16]
- 6. Draw a neat sketch of backward feed multiple effect evaporation system and discuss the salient features. When is backward feed operation preferred over forward feed? [16]
- 7. Determine the rate of heat loss from a 300 mm diameter steam pipe placed horizontally in ambient air at 30°C The length of the pipe is 5m and wall temperature, $Tw = 120^{\circ}C$ Use the following empirical expression: $Nu=0.53 (GrxPr)^{1/4}$ Properties of air at 100°C are as following $\beta = 1/373 \text{ K}^{-1}$?= 23.13 x 10⁻⁶ m² /sec K = 0.0325 W/m.KPr = 0.7Nu = 114.[16]
- 8. A light oil with $20^{\circ}C$ inlet temperature flows at the rate of 500 Kg/minute through 5cm inner diameter pipe which is enclosed by a jacket containing condensing steam at $150^{\circ}C$. If the pipe is 10 meter long, find the outlet temperature of the oil. [16]

R07

III B.Tech II Semester Examinations, APRIL 2011 HEAT TRANSFER IN BIOPROCESSES **Bio-Technology**

Time: 3 hours

Code No: 07A62303

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. How the local and average convection coefficients for flow past a flat plate are related? Derive the relationship. [16]
- 2. Explain the Batch sterilization process with neat sketch.
- 3. (a) What is the effect of liquid pressure on boiling?
 - (b) Write a short notes on pool boiling of saturated liquid. [8+8]
- 4. A heat exchanger heats 25,000 kg/hr of water entering at 30°C while cooling 20,000 kg/hr of water from 100°C to 80°C. Determine the area necessary for
 - (a) Parallel flow
 - (b) Counter flow arrangement [8+8]
- 5. Classify various types of evaporators with industrial applications. [16]
- 6. A plane brick wall, 25 cm thick, is faced with 5 cm thick concrete layer. If the temperature of the exposed brick face is 70° C and that of the concrete is 25° C, find out the heat lost per hour through a wall of 15 m x10 m. Also, determine the interface temperature. Thermal conductivity of the brick and concrete are 0.7 W/m.K and 0.95 W/m.K respectively. [16]
- 7. A long hollow cylinder has its inner and outer surfaces maintained at temperatures $T_{\rm b}$ and $T_{\rm a}$ respectively. The inner and outer radii are b and a respectively. Calculate the temperature profile in the solid section of the cylinder and determine the flux at both surfaces. Assume steady state condition. [16]
- 8. Determine the rate of heat loss from a 100 mm diameter steam pipe placed horizontally in ambient air at 30°C. The length of the pipe is 4 m and wall temperature, $Tw = 170^{\circ}C.$ Use the following empirical expression: $Nu=0.53 (GrPr)^{1/4}$ Properties of air at 100°C are as following $\beta = 1/373 \text{K}^{-1} \gamma = 23.13 \text{x} 10^{-6} \text{m}^2/\text{sec}$ K = 0.0425 W/m.K $\Pr = 0.8$ Nu = 110.[16]

www.firstranker.com