R07

Set No. 2

III B.Tech II Semester Examinations, APRIL 2011 VLSI DESIGN

Common to BME, ETM, E.CONT.E, ECE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain the processing steps in fabrication of PMOS technology with neat sketches.
 - (b) What are the additional two layers in BICMOS technology compared to other.

[10+6]

- 2. (a) Derive the relation between $I_{DS} \& V_{DS}$ of MOSFET.
 - (b) Draw the circuit for NMOS inverter and explain its operation.

[8+8]

3. Explain about Testing and Fault Simulation in VLSI Design.

[16]

- 4. (a) Explain about Technology Libraries used in synthesis tools.
 - (b) How delay effects are used in synthesis process.

[8+8]

- 5. (a) Derive the expression for τ_{SD} in the case of a MOSFET.
 - (b) Explain about sheet resistance and sheet capacitance.

[8+8]

- 6. (a) Explain about bit sliced Data path organization. What is the significance of Data paths in digital processors?
 - (b) Give the Truth Table for full adder and explain its Boolean expression. [8+8]
- 7. (a) Why scaling is required?
 - (b) How does Depletion Regions around Source and Drain are affected due to scaling down of device dimensions? Explain. [6+10]
- 8. (a) With the help of a block diagram explain the principle and operation of standard cells.
 - (b) Explain about different levels of abstraction.

[10+6]

R07

Set No. 4

III B.Tech II Semester Examinations, APRIL 2011 VLSI DESIGN

Common to BME, ETM, E.CONT.E, ECE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Explain about oxidation, Diffusion and Ion Implantation Processes of I C Fabrication. [16]
- 2. Draw the schamactic for PLA and explain the principle. What are the advantages of PLAs? [16]
- 3. (a) Draw the stick diagram and layout for the following function $f = A \overline{B} + \overline{A}C + B\overline{C}$
 - (b) What is the difference between ' α ' and ' β ' scaling factors? Give some examples.

[8+8]

- 4. With the help of a schematic explain the principle of Tree Multiplier. [16]
- 5. With a schematic explain about synthesis process. [16]
- 6. Draw the circuit for nMOS Inverter and explain its operation and characteristics.
 [16]
- 7. (a) Explain about BICMOS Driver circuits.
 - (b) Derive the expression for propogation delay τ_D in the case of cascaded pass Transistors. [8+8]
- 8. (a) What are the different categories of DFT techniques? Explain.
 - (b) What is meant by signature analysis in Testing? Explain with an example.

[8+8]

R07

Set No. 1

III B.Tech II Semester Examinations, APRIL 2011 VLSI DESIGN

Common to BME, ETM, E.CONT.E, ECE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Explain about Placement and Routing in VLSI Design. [16]
- 2. (a) Derive the expressions for Rise-Time τ_R and fall time τ_f in the case of CMOS Inverter.
 - (b) Express the Area capacitance in terms of standard capacitance units. [10+6]
- 3. Explain about the principle and operation of FPGAs. What are its applications?
- 4. What are the circuit design considerations in the case of static adder circuits. [16]
- 5. (a) Explain about Design Rule Check. Why is it employed?
 - (b) For various processes in MOS IC fabrication, explain about Design Rules.

[8+8]

- 6. (a) With the help of a schematic explain about Memory-self Test.
 - (b) What are the issues to be considered while implementing BIST? Explain. [8+8]
- 7. (a) What is the purpose of metallisation in I.C. manfacturing? Explain the methods employed for metallisation.
 - (b) What is probe testing? Why it is used? [10+6]
- 8. For the circuit shown in figure 1 calculate I_D and $V_D s$
 - (a) if $K_n = 120\mu A/v^2$, $V_{tn} = 0.6v\&\left(\frac{w}{L}\right)$ for the MOSFET M is 4.
 - (b) Draw the circuit for CMOS inverter and explain its characteristics. [8+8]

R07

Set No. 1

Figure 1

R07

Set No. 3

III B.Tech II Semester Examinations, APRIL 2011 $$\operatorname{VLSI}$ DESIGN

Common to BME, ETM, E.CONT.E, ECE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Explain about the process steps
 - (a) Crystal Growth
 - (b) Oxidation

Code No: 07A6EC03

- (c) Diffusion
- (d) Lithography
- (e) Matallisation

involved in the fabrication of ICs.

[16]

- 2. (a) Draw the CMOS circuit to realize the Boolean expression y=A-B, and explain the same.
 - (b) What is meant by fan in & fanout of gate.

[10+6]

- 3. (a) How layout design can be done for improving testability? Explain.
 - (b) Explain about different fault models in VLSI testing with examples. [8+8]
- 4. For nMOS Inverter driven by another nMOS Inverter, derive the expression for $\frac{Z_{pu}}{Z_{pd}}$ ratio. [16]
- 5. (a) What are the various constraints in Synthesis Process? Explain.

R07

Set No. 3

(b) Using block schematics, explain about attributes in synthesis process. [8+8]

6. Give the schematic for a 4×4 carry-save multiplier and explain its operation. [16]

7. Compare PLAs, PALs, CPLDs, FPGAs, and standard cells in all respects. [16]

8. Due to scaling and smaller dimensions of MOSFETs, explain the effect on

(a) Drain Induced Barrier lowering

(b) Lower Transconductance

Code No: 07A6EC03

(c) Inter - connect capacitance.

[6+6+4]