IV B.TECH - I SEMESTER EXAMINATIONS - MAY, 2011

 FINITE ELEMENT METHODS IN CIVIL ENGINEERING (CIVIL ENGINEERING)Time: 3hours
Max. Marks: $\mathbf{8 0}$

Answer any FIVE questions All Questions Carry Equal Marks

1. List the advantages, disadvantages and applications of Finite Element Method.
2. Deformation of a finite element is shown in Figure 1.
a) Develop a deformation field $u(x, y), v(x, y)$.
b) Determine $\varepsilon_{x}, \varepsilon_{y}, \gamma_{\mathrm{xy}}$.

Figure: 1
3. Derive an expression of shape functions and the stiffness matrix for one dimensional bar element.
4. a) What are natural coordinates and enumerate its advantages.
b) For the point $\mathrm{P}(2.5,4.5)$ located inside the triangle as shown in figure 2, find the area coordinates.

Figure: 2
5. Derive the element stiffness matrix for a linear isoparametric quadrilateral element.
[16]
6. For a 4 noded rectangular element shown in Figure 3, determine the following at $\varepsilon=0$; $\eta=0$. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} ; v=0.25$ and $u=[0,0,0.002,0.003,0.005,0.003,0,0]$.
Assume plane stress condition:
a) Jacobian matrix.
b) Strain displacement matrix.
c) Element stresses.

Figure: 3
7. Derive the strain - displacement matrix $[B]$ for axisymmetric triangular element.
8. Evaluate the integral $I=\int 1-1 /\left[3 e^{x}+x^{2}+1 /(x+2)\right] d x$ using one point and two point gauss quadrature.

IV B.TECH - I SEMESTER EXAMINATIONS - MAY, 2011 FINITE ELEMENT METHODS IN CIVIL ENGINEERING (CIVIL ENGINEERING)

Time: 3hours
Max. Marks: 80

Answer any FIVE questions All Questions Carry Equal Marks

1. A simply supported beam subjected to uniformly distributed load ' q_{o} ' over entire span and also point load of magnitude ' P ' at the centre of the span. Calculate the bending moment and deflection at mid span by using Rayleigh-Ritz method and compare with the exact solution.
2. Derive the constitutive relationship for a axisymmetric body subjected to axisymmetric loading.
3. Consider the stepped bar shown in Figure 1. Assemble the stiffness and force matrix. Also, determine the nodal displacements, element stresses and support reactions. [16]

Figure: 1
4. Explain the following terms with respect to finite element analysis:
a) Convergence and compatibility.
b) Geometric Inyariance.
5. Derive the element stiffness matrix for a 4-noded rectangular element in generalized coordinates.
6. a) Define isoparametric elements and state its advantages.
b) A four- noded quadrilateral element is shown in figure 2. Determine the generalized coordinates of point P whose location in the master element is given by $\xi=0.5$ and $\eta=0.5$.

Figure: 2
7. The nodal co-ordinates for an axisymmetric triangular are given as follows: $\mathrm{r}_{1}=15 \mathrm{~mm}, \mathrm{z}_{1}=15 \mathrm{~mm} ; \mathrm{r}_{2}=25 \mathrm{~mm}, \mathrm{z}_{2}=15 \mathrm{~mm} ; \mathrm{r}_{3}=35 \mathrm{~mm}, \mathrm{z}_{3}=50 \mathrm{~mm}$. Determine strain-displacement matrix[B]for the element.
8. List the various solution techniques used in finite element analysis and explain any one of the methods in detail.

IV B.TECH - I SEMESTER EXAMINATIONS - MAY, 2011 FINITE ELEMENT METHODS IN CIVIL ENGINEERING (CIVIL ENGINEERING)

Time: 3hours
Max. Marks: $\mathbf{8 0}$

Answer any FIVE questions All Questions Carry Equal Marks

1. A cantilever beam subjected to uniformly distributed load ' q_{o} ' over entire span and also point load of magnitude ' P ' at free end. Calculate the bending moment and shear force at the fixed end by using Rayleigh-Ritz method and compare with the exact solution. [16]
2. A displacement field $u=1+3 x+4 x^{3}+6 x y^{2}, v=x y-7 x^{2}$ is imposed on a square element whose coordinates are

Node No.	Coordinates
1	$(-1,-1)$
2	$(1,-1)$
3	$(1,1)$
4	$(-1,1)$

a) Write down the expression for strains $\varepsilon_{x}, \varepsilon_{y}, \gamma_{\mathrm{xy}}$
b) Find the strains at nodes
c) If $E=210 \mathrm{GPa}$, Find the stresses $\sigma_{x}, \sigma_{y}, \tau_{\mathrm{xy}}$. Assume plane strain condition.
3. A uniformly tapering rod is shown in Figure 1. Determine the elongation of the rod and the reaction developed at the fixed end when the rod is subjected to self-weight and given loading.

Figure: 1
4. For the triangular element shown in figure 2. Determine the Jacobian matrix and strain displacement matrix.

Figure: 2
5. Derive the element stiffness matrix for a three noded triangular element.
6. Derive the shape function for an eight-node quadrilateral element in natural coordinates.
7. An open ended cylinder of length 200 mm , outer diameter 100 mm and wall thickness 16 mm is subjected to an internal pressure of 1 MPa . Identify the type of problem and explain in detail how the problem can be solved by finite element method.
8. Using a 2×2 rule evaluate the integral $\int\left(3 x+2 x^{2}+x y^{2}\right) d x d y$ over the given area by Gaussian quadrature as shown in figure 3.

Figure: 3

IV B.TECH - I SEMESTER EXAMINATIONS - MAY, 2011 FINITE ELEMENT METHODS IN CIVIL ENGINEERING (CIVIL ENGINEERING)

Time: 3hours
Max. Marks: $\mathbf{8 0}$

Answer any FIVE questions All Questions Carry Equal Marks

1. Explain briefly the following:
a) Importance of Boundary condition
b) Discretization of structures to apply finite element method.
2. Derive the constitutive relationship for plane stress condition and plane strain condition.
3. Consider the plane truss system shown in Figure 1. Determine the element stiffness matrix for each element and assemble the global stiffness matrix for the entire truss. Area $=500$ mm^{2} for all elements and $\mathrm{E}=2.12 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

4. a) What is a shape function and enumerate its characteristics.
b) Determine the shape function for two noded bar element using polynomial functions and generalized coordinates.
[6+10]
5. Determine the strain-displacement matrix for the element shown in Figure 2.

Figure: 2
6. Derive the shape function for CST element.
7. Derive the stress-strain relationship matrix [D] for the axisymmetric triangular element.
8. Explain in detail the following:
a) Full integration.
b) Selective integration.

