IV B.Tech I Semester Examinations,MAY 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Answer any FIVE Questions

All Questions carry equal marks

1. Propose a technique for detecting gaps of length ranging between 1 and L pixels in line segment of a binary image. Assume that the lines are 1 pixel thick. Note: base your technique on 8-neighbor connectivity analysis.
2. Formulate 1D Hadamard (Rendundant) kernel for $\mathrm{N}=8$.
3. What is homomorphic filtering, Discuss its usefulness in Image enhancement. Explain with the help of block diagram.
4. The white bars in the test pattern shown in figure $4 b$ are 7 pixels wide and 210 pixels high. The separation between bars is 17 pixels. What would this image look like after application of
(a) A 7×7 geometric mean filter?
(b) A 9×9 geometric mean filter?

Figure 4b
5. Explain the following:
(a) Spatial processing
(b) Color vectoring processing.

Consider an 8- pixel line of gray-scale data, $\{12,12,13,13,10,13,57,54\}$, which has been uniformly quantized with 6 -bit accuracy. Construct its 3 -bit IGS code. [16]
6. What is high boost filtering? How it is different from high pass filtering, compare these techniques.
8. Consider the image segment shown below

3	1	2	$1(q)$
2	2	0	2
1	2	1	1
$(\mathrm{p}) 1$	0	1	2

(a) Let $\mathrm{V}=\{0,1\}$ and compute the $\mathrm{D} 4, \mathrm{D} 8$ and Dm distances between p and q
(b) repeat for $\mathrm{V}=\{1,2\}$

IV B.Tech I Semester Examinations,MAY 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Answer any FIVE Questions

All Questions carry equal marks

1. Explain the following Order-Statistics Filters.
(a) Max and min filters
(b) Median filter
(c) Midpoint filter.
2. (a) Explain the need of color image smoothing.
(b) Draw the HIS color model and give the expression for R G B interms of HIS.
3. Explain the working of LZW source level encoding with an example.
4. (a) With example discuss FWP concept
(b) What are the advantages and disadvantages of FWT.
5. Basic approach used to compute the digital gradient involves taking the differences of the form $f(x, y)-f(x+1, y)$
(a) Obtain filter transfer function $\mathrm{H}(\mathrm{u}, \mathrm{v})$ for performing equivalent process in the frequency domain.
(b) Show that it is a high pass filter.
6. Develop an algorithm for converting a one pixel thick, 8 -connected path to 4connected path.
7. Answer the following from the given 3 X 3 image Assume that the Prewitt masks are used to obtain Gx and Gy.
Show that the gradient
Computed by $\nabla \mathrm{f}=\operatorname{mag}(\nabla \mathrm{f})\left[\mathrm{G}_{\mathrm{x}}^{2}+\mathrm{G}_{\mathrm{y}}^{2}\right]^{1 / 2}$ and $\nabla \mathrm{f}=|\mathrm{Gx}|+[\mathrm{Gy}]$ give identical for edges oriented in the horizontal and vertical directions.
Note: masks used to compute the gradient at point labeled Z_{5}.
$\nabla \mathrm{f}=\operatorname{mag}(\nabla \mathrm{f})\left[\mathrm{G}_{\mathrm{x}}^{2}+\mathrm{G}_{\mathrm{y}}^{2}\right]^{1 / 2}$ and $\nabla \mathrm{f}=|\mathrm{Gx}|+|\mathrm{Gy}|$ give identical results for edges oriented in the horizontal and vertical directions.

Z1	Z2	Z3
Z4	Z5	Z6
Z7	Z8	Z9

8. Discuss the limiting effect of repeatedly applying a 3X3 low pass spatial filter to a digital Image. You may ignore the border effects.

IV B.Tech I Semester Examinations,MAY 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Answer any FIVE Questions

All Questions carry equal marks

1. Draw and explain HIS triangle of the RBG color cube.
2. With mathematical expressions discuss Haar transform and explain howit is useful in Image processing.
3. (a) Write about Roberts edge Detector.
(b) Explain about Laplacian of a Gaussian (LoG) Detector.
4. Explain following spatial filters.
(a) Median filter
(b) Min. filter
(c) Max.filter
(d) Low pass filter.
 16]
5. The white bars in the test pattern shown in figure 5 b are 7 pixels wide and 210 pixels high. The separation between bars is 17 pixels. What would this image look like after application of
(a) A 3×3 geometric mean filter?
(b) A 9×9 geometric mean filter?

Figure 5b
6. (a) Construct the entire 4-bit Gray code.
(b) Create a general procedure for converting a gray coded number to its binary equivalent and use it to decode 0111010100111.
[8+8]
7. A common measure of transmission for digital data is the baud rate, defined as the number of bits transmitted per second. Generally, transmission is accomplished in pockets consisting of starting bit, a byte of information, and a stop bit. Using this approach, answer the following.
(a) How many minutes would it take to transmit a 512×512 image with 256 gray levels at 300 baud?
(b) What would the time be at 9600 baud?
(c) Repeat
(a) and (b) for a 1024×1024 image 256 gray levels.
8. (a) State and explain convolution theorem and correlation theorem.
(b) What is succesive doubling and how it is used to formulate Fast Fourier transform.

IV B.Tech I Semester Examinations,MAY 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Explain the need for Image enhancement.
(b) Explain Gray level transformation functions for contrast enhancement. [8+8]
2. Explain about Adaptive, local noise reduction filter.
3. Explain the following properties of 2D-Fourier Transform:
(a) Distributives and scaling
(b) Rotation
(c) Periodicity and conjugate symmetry
(d) Seperability.
4. Prove that the average value of any image convolved with the equation $\left.\nabla^{2} \mathrm{~h}=\left(\left(\mathrm{r}^{2}-\sigma^{2}\right) / \sigma^{4}\right)\right) \exp \left(-\mathrm{r}^{2} / 2 \sigma^{2}\right)$ is zero.
5. Explain the following;
(a) Arithnetic operations on Images
(b) Logical operations on Images.
6. (a) Draw the relevant diagram for a communication system model.
(b) Explain the noiseless coding theorem.
7. Derive the CMY intensity mapping function of $\operatorname{si}=\mathrm{kri}+(1-\mathrm{k}) \mathrm{I}=1,2,3$ from its RGB counterpart in si $=$ kri $\mathrm{I}=1,2,3$.
8. (a) Assume continuous variables and show that the Fourier transform the constant function $\mathrm{f}(\mathrm{x}, \mathrm{y})=1$ is the unit impulse function $\delta(\mathrm{u}, \mathrm{v})$, defined as $\delta(\mathrm{u}, \mathrm{v})=$ infinity, if $u=v=0$ and $\delta(u, v)=0$ otherwise.
(b) What is the result if $\mathrm{f}(\mathrm{x}, \mathrm{y})=1$ is now a digital Image of size NXN. [8+8]
