R07

Set No. 2

IV B.Tech I Semester Examinations, MAY 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Time: 3 hours

Code No: 07A70501

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- Propose a technique for detecting gaps of length ranging between 1 and L pixels in line segment of a binary image. Assume that the lines are 1 pixel thick. Note: base your technique on 8-neighbor connectivity analysis. [16]
- 2. Formulate 1D Hadamard (Rendundant) kernel for N=8.
- 3. What is homomorphic filtering, Discuss its usefulness in Image enhancement. Explain with the help of block diagram. [16]
- 4. The white bars in the test pattern shown in figure 4b are 7 pixels wide and 210 pixels high. The separation between bars is 17 pixels. What would this image look like after application of
 - (a) A 7×7 geometric mean filter?
 - (b) A 9×9 geometric mean filter?

Figure 4b

- 5. Explain the following:
 - (a) Spatial processing
 - (b) Color vectoring processing.

Consider an 8- pixel line of gray-scale data, {12,12,13,13,10,13,57,54}, which has been uniformly quantized with 6-bit accuracy. Construct its 3-bit IGS code. [16]

- 6. What is high boost filtering? How it is different from high pass filtering, compare these techniques.
 [16]
- 8. Consider the image segment shown below

www.firstranker.com

[8+8]

1 210

[16]

[16]

R07

Set No. 2

Code No: 07A70501

(a) Let V = {0,1} and compute the D4, D8 and Dm distances between p and q
(b) repeat for V = {1,2}

R07

Set No. 4

Max Marks: 80

IV B.Tech I Semester Examinations, MAY 2011 DIGITAL IMAGE PROCESSING **Electronics And Communication Engineering**

Time: 3 hours

Code No: 07A70501

Answer any FIVE Questions All Questions carry equal marks

- 1. Explain the following Order-Statistics Filters.
 - (a) Max and min filters
 - (b) Median filter
 - (c) Midpoint filter.
- (a) Explain the need of color image smoothing. 2.
 - (b) Draw the HIS color model and give the expression for R G B interms of HIS.

[8+8]

[16]

[16]

- 3. Explain the working of LZW source level encoding with an example. [16]
- 4. (a) With example discuss FWT concept .
 - (b) What are the advantages and disadvantages of FWT. [8+8]
- 5. Basic approach used to compute the digital gradient involves taking the differences of the form f(x,y) - f(x+1,y).
 - (a) Obtain filter transfer function H(u,v) for performing equivalent process in the frequency domain.
 - (b) Show that it is a high pass filter.
- 6. Develop an algorithm for converting a one pixel thick, 8-connected path to 4connected path. [16]
- 7. Answer the following from the given 3 X 3 image Assume that the Prewitt masks are used to obtain Gx and Gy.

Show that the gradient

Computed by $\nabla f = mag(\nabla f)[G_x^2 + G_y^2]^{1/2}$ and $\nabla f = |Gx| + [Gy]$ give identical for edges oriented in the horizontal and vertical directions.

Note: masks used to compute the gradient at point labeled Z_5 . $\nabla f = mag(\nabla f)[G_x^2 + G_y^2]^{1/2}$ and $\nabla f = |Gx| + |Gy|$ give identical results for edges oriented in the horizontal and vertical directions. [16]

Z1	Z2	Z3
Z4	Z5	Z6
Z7	Z8	Z9

8. Discuss the limiting effect of repeatedly applying a 3X3 low pass spatial filter to a digital Image. You may ignore the border effects. [16]

www.firstranker.com

www.firstranker.com

Code No: 07A70501

R07

FRAMER

R07

Set No. 1

Max Marks: 80

IV B.Tech I Semester Examinations, MAY 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Time: 3 hours

Code No: 07A70501

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Draw and explain HIS triangle of the RBG color cube.
- 2. With mathematical expressions discuss Haar transform and explain how it is useful in Image processing. [16]
- 3. (a) Write about Roberts edge Detector.
 - (b) Explain about Laplacian of a Gaussian (LoG) Detector. [8+8]
- 4. Explain following spatial filters.
 - (a) Median filter
 - (b) Min. filter
 - (c) Max.filter
 - (d) Low pass filter.
- 5. The white bars in the test pattern shown in figure 5b are 7 pixels wide and 210 pixels high. The separation between bars is 17 pixels. What would this image look like after application of
 - (a) A 3×3 geometric mean filter?
 - (b) A 9×9 geometric mean filter?

Figure 5b

- 6. (a) Construct the entire 4-bit Gray code.
 - (b) Create a general procedure for converting a gray coded number to its binary equivalent and use it to decode 0111010100111. [8+8]
- 7. A common measure of transmission for digital data is the baud rate, defined as the number of bits transmitted per second. Generally, transmission is accomplished in pockets consisting of starting bit, a byte of information, and a stop bit. Using this approach, answer the following.

www.firstranker.com

•

[16]

[16]

[16]

www.firstranker.com

Code No: 07A70501

$\mathbf{R07}$

Set No. 1

- (a) How many minutes would it take to transmit a 512×512 image with 256 gray levels at 300 baud?
- (b) What would the time be at 9600 baud?
- (c) Repeat

 (a) and (b) for a 1024×1024 image 256 gray levels.
 [16]
- 8. (a) State and explain convolution theorem and correlation theorem.
 - (b) What is succesive doubling and how it is used to formulate Fast Fourier transform. [8+8]

RSI

Code No: 07A70501

R07

IV B.Tech I Semester Examinations, MAY 2011

Set No. 3

DIGITAL IMAGE PROCESSING Electronics And Communication Engineering
Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks *****
1. (a) Explain the need for Image enhancement.
(b) Explain Gray level transformation functions for contrast enhancement. $[8+8]$
2. Explain about Adaptive, local noise reduction filter. [16]
3. Explain the following properties of 2D-Fourier Transform:
(a) Distributives and scaling(b) Rotation(c) Periodicity and conjugate symmetry
(d) Seperability. [16]
4. Prove that the average value of any image convolved with the equation $\nabla^2 h = ((r^2 - \sigma^2)/\sigma^4)) \exp(-r^2/2\sigma^2) \text{ is zero.} $ [16]
5. Explain the following:
(a) Arithmetic operations on Images
(b) Logical operations on Images. [16]
6. (a) Draw the relevant diagram for a communication system model.
(b) Explain the noiseless coding theorem. [8+8]
 7. Derive the CMY intensity mapping function of si = kri + (1-k) I=1,2,3 from its RGB counterpart in si = kri I =1,2,3. [16]
8. (a) Assume continuous variables and show that the Fourier transform the constant function $f(x,y) = 1$ is the unit impulse function $\delta(u,v)$, defined as $\delta(u,v) = 0$.

infinity, if u=v=0 and $\delta(u,v)=0$ otherwise. (b) What is the result if f(x,y) =1 is now a digital Image of size NXN. [8+8]
