IV B.Tech I Semester Examinations,MAY 2011 AUTOMATA AND COMPILER DESIGN
 Electronics And Computer Engineering

Time: 3 hours

Answer any FIVE Questions

 All Questions carry equal marks1. (a) Define the following:
i. Basic Block
ii. Local Optimization
iii. Global Optimization.
(b) Explain about Algebraic Transformations?
(c) "Copy propagation Leads to Dead code" - Justify the statement. [6+6+4]
2. Generate code for following instructions and their associated cost, assume 3 registers are available and all variables are static.
(a) $\mathrm{X}=\mathrm{a}[\mathrm{i}]+1$
(b) $\mathrm{a}[\mathrm{i}]=\mathrm{b}[\mathrm{c}[\mathrm{i}]]$
(c) $\mathrm{a}[\mathrm{i}][\mathrm{j}]=\mathrm{b}[\mathrm{i}][\mathrm{k}] * \mathrm{c}[\mathrm{k}[\mathrm{j}]$
(d) $\mathrm{a}[\mathrm{i}]=\mathrm{b}[\mathrm{i}]+\mathrm{c}[\mathrm{j}]$.
3. (a) Find -Closure(A) and \in-Closure(C) for the Finite Automaton as shown in figure $3 a$.

Figure 3a
(b) Explain the bootstrapping process with a suitable diagram.
4. Describe, in detail, an operator precedence parsing with an example.
5. (a) Explain how scope information is represented in the symbol table for block structured language?
(b) Write and explain about activation record?
6. (a) Construct triples of the expressions: $\mathrm{a}[\mathrm{i}]:=\mathrm{b}$ and $\mathrm{a}:=\mathrm{b}[\mathrm{i}]$
(b) Generate the three-address code for the following ' C ' program fragment: for $(\mathrm{i}=1 ; \mathrm{i}<=20 ; \mathrm{i}++)$ if $(\mathrm{a}<\mathrm{b}) \mathrm{x}=\mathrm{y}+\mathrm{z}$;
7. (a) Distinguish static and dynamic Type checking?
(b) Discuss in detail about semantic analysis phase?
8. (a) Test whether the following grammar is $\mathrm{LL}(1)$ or not.
$\mathrm{S} \rightarrow \mathrm{AaAb} \mid \mathrm{BbBa}$
$\mathrm{A} \rightarrow \in$
$\mathrm{B} \rightarrow \epsilon$
(b) Construct the predictive parse table for the following grammar:
$\mathrm{S} \rightarrow \mathrm{A}$
A $\rightarrow \mathrm{aB} \mid \mathrm{Ad}$
$\mathrm{B} \rightarrow \mathrm{bBC} \mid \mathrm{f}$
$\mathrm{C} \rightarrow \mathrm{g}$.

IV B.Tech I Semester Examinations,MAY 2011 AUTOMATA AND COMPILER DESIGN
 Electronics And Computer Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Write the algorithm to test structural equivalence of two type expressions s and t.
(b) Write about type graph.
2. (a) Construct a Context Free Grammar (CFG) for generating the balanced parentheses, like (), [], [() ()], ([]), etc.
(b) Find the moves of the above grammar to derive the string. (1 ()] ()) [10+6]
3. Construct DAG for the following basic block:
$\mathrm{d}:=\mathrm{b}+\mathrm{c}$
$\mathrm{e}:=\mathrm{a}+\mathrm{b}$
$\mathrm{b}:=\mathrm{b}^{*} \mathrm{c}$
$\mathrm{a}:=\mathrm{e}-\mathrm{d}$.
4. (a) Which data structure will be used to implement a symbol table in an efficient way? Give reasons.
(b) Discuss and analyze about all the allocation strategies in run-time storage environment
5. (a) Construct an NFA equivalent to the following Regular Expressions:
i. $\left(0+1(01)^{*}\right)^{*}$
ii. $(00+1)^{*}(10)^{*}$
(b) Compute the equivalent DFA for the NFA as shown in figure 5 b .

$$
[4+4+8]
$$

Figure 5b
6. What is the limit flow graph? Is the flow graph shown in figure 6 reducible? Explain.

Figure 6
7. Generate the three-address code for the following executable statements of the ' C ?' program fragment by assuming ?a? and ?b? are arrays of size 20×20 and there are 4 bytes per word. void main()
\{
add $=\operatorname{add}+\mathrm{a}[\mathrm{i}][\mathrm{j}] * \mathrm{~b}[\mathrm{j}][\mathrm{i}]$;
$\mathrm{i}=\mathrm{i}+1 ;$
$\mathrm{j}=\mathrm{j}+1$;
\}
while(i $<=20 \& \& j<=20)$;
\}
8. Consider the following grammar:
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{a}$
(a) Construct the SLR parse table.
(b) Find the moves made by the parser on the input string: $\mathrm{a}+\mathrm{a}$ * a . $[10+6]$

IV B.Tech I Semester Examinations,MAY 2011 AUTOMATA AND COMPILER DESIGN
 Electronics And Computer Engineering

Time: 3 hours

Answer any FIVE Questions

 All Questions carry equal marks1. (a) What is an LL(1) parse table? Explain.
(b) Build an $\mathrm{LL}(1)$ parse table for the following production grammar: $\mathrm{S} \rightarrow \mathrm{CC}$ $\mathrm{C} \rightarrow \mathrm{cC} \mid \mathrm{d}$.
2. (a) What is a Syntax Directed Definition? Give an example.
(b) Explain the Dependency Graph with an example.
3. (a) Explain scope and lifetime of variable with some suitable examples.
(b) What is meant by dangling references? Explain.
4. Explain in detail various type of Grammars, Languages and its equivalent recognizers?
5. (a) Construct a DFA accepting the set of strings with an odd number of 0 's and an odd number of 1 's over the alphabet $\Sigma=\{0,1\}$.
(b) Find the Regular expression for the Finite Automaton as shown in figure 5b.

Figure 5b
6. Build the SLR(1) parsing table for the following grammar:
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{TF} \mid \mathrm{F}$
$\mathrm{F} \rightarrow \mathrm{F} *|\mathrm{a}| \mathrm{b}$.
7. (a) Write and explain about Data-Flow Analysis of Structured Programs.
(b) Write about Conservative Estimation of Data-Flow Information.
8. Generate optimal code for following assignment statements

$$
\begin{align*}
& \mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c} \\
& \mathrm{x}=(\mathrm{a} *-\mathrm{b})+(\mathrm{c}-(\mathrm{d}+\mathrm{e})) \\
& \mathrm{x}=(\mathrm{a} / \mathrm{b}-\mathrm{c}) / \mathrm{d} \\
& \mathrm{x}=\mathrm{a}+(\mathrm{b}+\mathrm{c} / \mathrm{d} * e) /(\mathrm{f} * \mathrm{~g}=\mathrm{h} * \mathrm{i}) .
\end{align*}
$$

IV B.Tech I Semester Examinations,MAY 2011 AUTOMATA AND COMPILER DESIGN
 Electronics And Computer Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Explain the machines to accept context free language and recursively enumerable sets with examples.
2. (a) Explain the Dynamic storage allocation facilities provided by C language?
(b) What is dangling reference in storage allocation? Explain withy an example.
3. Explain about macros and their features?
4. Consider the following Syntax Directed Translation Schema:
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}\{$ print '+'\}
$\mathrm{E} \rightarrow \mathrm{E} * \mathrm{E}\left\{\right.$ print $\left.{ }^{(*)}\right\}$
$\mathrm{E} \rightarrow(\mathrm{E})\{$.
$\mathrm{E} \rightarrow \mathrm{i}$ \{ print 'id.name'\}
An LR parser executes the actions specified within braces immediately after reducing with the corresponding production. Draw the decorated parse tree and find the translation of a string: $(a+b) *(c+d)$ into another string using Syntax Directed Translation Schemes.
5. Explain in cetail the procedure that eliminating global common sub expression?
6. (a) What is the time complexity of a parser to parse a string of ' n ' tokens?
(b) Consider the Grammar: $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{S} \rightarrow \mathrm{aAa}|\mathrm{bAb}| \mid \mathrm{A}, \mathrm{A} \rightarrow \mathrm{SS}\}, \mathrm{S})$ Find the leftmost derivation, rightmost derivation, and parse tree for the string: baabbb.
7. Consider the grammar: $S \rightarrow(S) \mid a$ Construct the DFA for $\operatorname{SLR}(1)$, $\operatorname{CLR}(1)$, and $\operatorname{LALR}(1)$ parsers and find the number of states in each of the parser.
8. (a) Design a DFA that accepts the language over the alphabet, $\Sigma=\{0,1,2\}$ where the decimal equivalent of the language is divisible by 3 .
(b) Compare compiler and an interpreter with the help of suitable examples. [8+8]
