R07

Set No. 2

IV B.Tech I Semester Examinations, MAY 2011 MEMBRANE TECHNOLOGY **Chemical Engineering**

Time: 3 hours

Code No: 07A70808

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Discuss about:
 - (a) Importance of spinnerets in tubular membrane.
 - (b) Explain the laboratory setup for tubular membrane preparation
 - (c) Write the methods to prepare hallow fiber and capillary membrane. [6+6+4]
- 2. Write short note on
 - (a) Resistance towards mass transport.
 - (b) Concentration polarization in pressure driven membranes.
 - (c) Fully developed laminar and turbulent flow. [6+4+6]
- 3. (a) Discuss Henrys law and Langmuir equations.
 - (b) Discuss transportation through porous membrane. [8+8]
- 4. Discuss DSC/DTA physical methods for non porous membrane. [16]
- (a) Pressure retarded osmosis(PRO) allows to produce energy originating from an 5. osmotic flow due to an osmotic pressure difference.
 - (b) Is the maximum power obtained at $\Delta p = 0$? Calculate the power which can be generated from 3% and a 15% NaCl solution respectively, and a membrane permeability of Lp= $0.36 \text{ kg}/m^2$, hr.bar(assume vont hoff law is still valid)

[8+8]

[6+10]

[4+4+4+4]

- 6. (a) Write the uses of plates and frames in plate and frame module.
 - (b) Explain spiral wound module with diagram.
- 7. Write short note on:

(a) Firkin flux.

- (b) porous membranes.
- (c) Carrier mediated transport.
- (d) Facilitated transport.

www.firstranker.com

 $\mathbf{R07}$

Set No. 2

8. The pure water flux of a membrane with a diameter of 7.5 cm has been determined as a function of the applied pressure. The following results are obtained:

Δp	flux(mol/hr)
5	103
10	202
15	287
20	386
25	501

Code No: 07A70808

Determine the water permeability coefficient graphically.

[16]

R07

IV B.Tech I Semester Examinations, MAY 2011 MEMBRANE TECHNOLOGY **Chemical Engineering**

Time: 3 hours

Code No: 07A70808

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1.	. Compare the different membranes for basic parameters.	
2.	Discuss clustering and solubility of liquid mixture.	[16]
3.	Define: (a) Dip coating (b) Interfacial polymerization.	4
4.	(c) Spray coating.(d) Capillary membranes.Explain:	[16]
	(a) Boundary layer resistance model.(b) Gel layer model.	[8+8]
5.	 Discuss following with diagrammatic representation: (a) Asymmetric membranes. (b) Porous membranes. (c) Homogeneous membranes. 	[1 0]
6.	(d) Cylinarical porous membranes. Write short note on:	[10]
	(a) gas separation through non porous membrane.(b) choice of organic solvents in liquid membrane.	[16]

7. A polymer solved in a water has a hydrodynamic radius of 15 nm. Calculate the rejection of membrane with a uniform pore radius 0.05 m and 0.1 m for the case of no adsorption at the pore wall and for the case with monolayer adsorption at the pore wall.

[16]

8. Calculate the osmotic pressure of the following aqueous solution 3% NaCl(MNacl = 58.45 g/mol) by weight, 3% albumin(Malb 65.000 g/mol) by weight and a suspension containing 30 g/l of a solid (where the particle weight is 1 ng= (10^{-9} g) at a temperature 25 C. [16]

www.firstranker.com

 $\mathbf{R07}$

Set No. 1

IV B.Tech I Semester Examinations, MAY 2011 MEMBRANE TECHNOLOGY Chemical Engineering

Time: 3 hours

Code No: 07A70808

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks * * * * *

1. (a) Write brief note on consequences of concentration polarization.

	(b) Discuss fully developed laminar and turbulent velocities in a pipe gram.	with dia- [6+10]
2.	(a) List out the industrial applications of micro filtration.	
	(b) List out the industrial applications of ultra filtration.	[8+8]
3.	(a) Write any six physical and chemical properties and give classificat on their separation process.	ion based
	(b) Define separation process and explain the sorting demon process.	[8+8]
4.	Explain how to determine diffusion coefficient by time lag method.	[16]
5.	Explain and justify:	
	(a) Importance of membrane structure.	
	(b) Importance of materials used to prepare synthetic membrane.	[16]
6.	Discuss about hallo fiber module and plate and frame module.	[16]
7.	Draw and explain the following with diagrams:	
	(a) Supported liquid membranes.	
	(b) Emulsion liquid membranes.	[8+8]
8.	Discuss wide angle XRD with graph .	[16]

R07

Set No. 3

IV B.Tech I Semester Examinations, MAY 2011 MEMBRANE TECHNOLOGY Chemical Engineering

Time: 3 hours

Code No: 07A70808

Max Marks: 80

[16]

[8+8]

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Discuss briefly about:
 - (a) Interactive system.
 - (b) Henrys law.
 - (c) Diffusion coefficient.
 - (d) Flux.
- 2. Write notes on:
 - (a) Plasma etching.
 - (b) Archimedes principle.
- 3. Discuss about:
 - (a) Importance of spinnerets in tubular membrane.
 - (b) Explain the laboratory setup for tubular membrane preparation.
 - (c) Write the methods to prepare hallow fiber and capillary membrane. [6+6+4]

24145

- 4. (a) Write the important parameters of electro dialysis
 - (b) Explain separation of amino acids through electro dialysis [8+8]
- 5. (a) Write a note on modules and process designs.
 - (b) Discuss about plate and frame modules with schematic flow path. [6+10]
- 6. Discuss the following:
 - (a) Membrane.
 - (b) Membrane process.
 - (c) Selectivity.
 - (d) Flow.
- 7. (a) Write the concepts of pervaporation.
 - (b) Short note on supported liquid membranes.
 - (c) draw and explain schematic drawing of the pervaporation process with a downstream vacuum.
 - (d) Write a short note on porous membrane. [16]

www.firstranker.com

www.firstranker.com

Code No: 07A70808

 $\mathbf{R07}$

Set No. 3

- 8. (a) A 5% solution of sucrose (Mw = 342 g/l) is concentrated using a tubular nano filtration membrane with an internal diameter of 6mm. The membrane shows a complete rejection for sucrose. With a feed solution of 5 wt%, a temperature of 20 C and a pressure of 20 bar, a flux is measured of $33.5 \ l/m^2$.hr at a cross flow velocity of 0.5 m/s while at a velocity 4.5 m/s a flux is measured of 48.9 l/m^2 h. other data density is 103 kg/m³ $\eta = 1.1*10^{-3}$ pa.S a= 0.05, b= 1.1 Dsucr = 4.2 *10⁻¹⁰ m²/s.
 - (b) Calculate the concentration polarization modules for both flow rates.
 - (c) calculate the flux at 10 bar assuming that the concentration polarization. modules remains same. [16]

AN RC